Soft sweep development of resistance in Escherichia coli under fluoroquinolone stress
Abstract
We employed a stepwise selection model for investigating the dynamics of antibiotic-resistant variants in Escherichia coli K-12 treated with increasing concentrations of ciprofloxacin (CIP). Firstly, we used Sanger sequencing to screen the variations in the fluoquinolone target genes, then, employed Illumina NGS sequencing for amplicons targeted regions with variations. The results demonstrated that variations G81C in gyrA and K276N and K277L in parC are standing resistance variations (SRVs), while S83A and S83L in gyrA and G78C in parC were emerging resistance variations (ERVs). The variants containing SRVs and/or ERVs were selected successively based on their sensitivities to CIP. Variant strain 1, containing substitution G81C in gyrA, was immediately selected following ciprofloxacin exposure, with obvious increases in the parC SRV, and parC and gyrA ERV allele frequencies. Variant strain 2, containing the SRVs, then dominated the population following a 20× increase in ciprofloxacin concentration, with other associated allele frequencies also elevated. Variant strains 3 and 4, containing ERVs in gyrA and parC, respectively, were then selected at 40× and 160× antibiotic concentrations. Two variants, strains 5 and 6, generated in the selection procedure, were lost because of higher fitness costs or a lower level of resistance compared with variants 3 and 4. For the second induction, all variations/indels were already present as SRVs and selected out step by step at different passages. Whatever the first induction or second induction, our results confirmed the soft selective sweep hypothesis and provided critical information for guiding clinical treatment of pathogens containing SRVs.
Keywords
soft sweeps stepwise selection Escherichia coli ciprofloxacin fitness costPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
We thank Tamsin Sheen, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.
This work was supported by the National Special Project on Research and Development of Key Biosafety Technologies (contract no. 2016YFC1200100) and the 973 Project of MOST (contract no. 2015CB554202).
Supplementary material
References
- Andersson, D.I. and Hughes, D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol.8, 260–271.PubMedGoogle Scholar
- Baltekin, O., Boucharin, A., Tano, E., Andersson, D.I., and Elf, J. 2017. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc. Natl. Acad. Sci. USA114, 9170–9175.PubMedGoogle Scholar
- Belland, R.J., Morrison, S.G., Ison, C., and Huang, W.M. 1994. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol. Microbiol.14, 371–380.PubMedGoogle Scholar
- Caporaso J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods7, 335–336.PubMedPubMedCentralGoogle Scholar
- Clinical and Laboratory Standards Institute. 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. CLSI publication M07-A8. Wayne: Clinical and Laboratory Standards Institute.Google Scholar
- Conrad, S., Oethinger, M., Kaifel, K., Klotz, G., Marre, R., and Kern, W.V. 1996. gyrA mutations in high-level fluoroquinolone-resistant clinical isolates of Escherichia coli. J. Antimicrob. Chemother.38, 443–455.PubMedGoogle Scholar
- Cui, Y., Yu, C., Yan, Y., Li, D., Li, Y., Jombart, T., Weinert, L.A., Wang, Z., Guo, Z., Xu, L., et al. 2013. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc. Natl. Acad. Sci. USA110, 577–582.PubMedGoogle Scholar
- DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet.43, 491–498.PubMedPubMedCentralGoogle Scholar
- Drake, J.W., Charlesworth, B., Charlesworth, D., and Crow, J.F. 1998. Rates of spontaneous mutation. Genetics148, 1667–1686.PubMedPubMedCentralGoogle Scholar
- Drlica, K., Hiasa, H., Kerns, R., Malik, M., Mustaev, A., and Zhao, X. 2009. Quinolones: action and resistance updated. Curr. Top. Med. Chem.9, 981–998.PubMedPubMedCentralGoogle Scholar
- Drlica, K. and Zhao, X. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev.61, 377–392.PubMedPubMedCentralGoogle Scholar
- Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics27, 2194–2200.PubMedPubMedCentralGoogle Scholar
- Ferrero, L., Cameron, B., and Crouzet, J. 1995. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob. Agents Chemother.39, 1554–1558.PubMedPubMedCentralGoogle Scholar
- Furusawa, C., Horinouchi, T., and Maeda, T. 2018. Toward prediction and control of antibiotic-resistance evolution. Curr. Opin. Biotechnol.54, 45–49.PubMedGoogle Scholar
- Harkins, C.P., Pichon, B., Doumith, M., Parkhill, J., Westh, H., Tomasz, A., de Lencastre, H., Bentley, S.D., Kearns, A.M., and Holden, M.T.G. 2017. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol.18, 130.PubMedPubMedCentralGoogle Scholar
- Hermisson, J. and Pennings, P.S. 2005. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics169, 2335–1352.PubMedPubMedCentralGoogle Scholar
- Hooper, D.C. 2000. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin. Infect. Dis.31, S24–28.PubMedGoogle Scholar
- Hooper, D.C. 2001. Emerging mechanisms of fluoroquinolone resistance. Emerg. Infect. Dis.7, 337–341.PubMedPubMedCentralGoogle Scholar
- Huang, T., Zheng, Y., Yan, Y., Yang, L., Yao, Y., Zheng, J., Wu, L., Wang, X., Chen, Y., Xing, J., et al. 2016. Probing minority population of antibiotic-resistant bacteria. Biosens. Bioelectron.80, 323–330.PubMedGoogle Scholar
- Hughes, D. and Andersson, D.I. 2015. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat. Rev. Genet.16, 459–471.PubMedGoogle Scholar
- Jaskólska, M. and Gerdes, K. 2015. CRP-dependent positive autoregulation and proteolytic degradation regulate competence activator Sxy of Escherichia coli. Mol. Microbiol.95, 833–845.PubMedGoogle Scholar
- Jee, J., Rasouly, A., Shamovsky, I., Akivis, Y., Steinman, S.R., Mishra, B., and Nudler, E. 2016. Rates and mechanisms of bacterial mutagenesis from maximum-depth sequencing. Nature534, 693–696.PubMedPubMedCentralGoogle Scholar
- Jensen, J.D. 2014. On the unfounded enthusiasm for soft selective sweeps. Nat. Commun.5, 5281.PubMedGoogle Scholar
- Kim, J., Jeon, S., Kim, H., Park, M., Kim, S., and Kim, S. 2012. Multiplex real-time polymerase chain reaction-based method for the rapid detection of gyrA and parC mutations in quinolone-resistant Escherichia coli and Shigella spp. Osong Public Health Res. Perspect.3, 113–117.PubMedPubMedCentralGoogle Scholar
- Koch, L. 2017. Pathogen genetics: evolutionary dynamics driving drug resistance. Nat. Rev. Genet.18, 578–579.PubMedGoogle Scholar
- Komp Lindgren, P., Karlsson, A., and Hughes, D. 2003. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob. Agents Chemother.47, 3222–3232.PubMedPubMedCentralGoogle Scholar
- Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., and Salzberg, S.L. 2004. Versatile and open software for comparing large genomes. Genome Biol.5, R12.PubMedPubMedCentralGoogle Scholar
- Lenski, R.E. 2017. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J.11, 2181–2194.PubMedPubMedCentralGoogle Scholar
- Li, X., Mariano, N., Rahal, J.J., Urban, C.M., and Drlica, K. 2004. Quinolone-resistant Haemophilus influenzae: determination of mutant selection window for ciprofloxacin, garenoxacin, levofloxacin, and moxifloxacin. Antimicrob. Agents Chemother.48, 4460–4462.PubMedPubMedCentralGoogle Scholar
- Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G., Kristiansen, K., et al. 2009. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res.20, 265–272.PubMedGoogle Scholar
- Lin, W., Zeng, J., Wan, K., Lv, L., Guo, L., Li, X., and Yu, X. 2018. Reduction of the fitness cost of antibiotic resistance caused by chromosomal mutations under poor nutrient conditions. Environ. Int.120, 63–71.PubMedGoogle Scholar
- Lo, S.W., Kumar, N., and Wheeler, N.E. 2018. Breaking the code of antibiotic resistance. Nat. Rev. Microbiol.16, 262.PubMedGoogle Scholar
- Long, H., Miller, S.F., Strauss, C., Zhao, C., Cheng, L., Ye, Z., Griffin, K., Te, R., Lee, H., Chen, C.C., et al. 2016. Antibiotic treatment enhances the genome-wide mutation rate of target cells. Proc. Natl. Acad. Sci. USA113, E2498–2505.PubMedGoogle Scholar
- López, E., Elez, M., Matic, I., and Blázquez, J. 2007. Antibiotic-mediated recombination: ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli. Mol. Microbiol.64, 83–93.PubMedGoogle Scholar
- Magoc, T. and Salzberg, S.L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics27, 2957–2963.PubMedPubMedCentralGoogle Scholar
- Marcusson, L.L., Frimodt-Moller, N., and Hughes, D. 2009. Interplay in the selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog.5, e1000541.PubMedPubMedCentralGoogle Scholar
- Martinez, J.L., Baquero, F., and Andersson, D.I. 2011. Beyond serial passages: new methods for predicting the emergence of resistance to novel antibiotics. Curr. Opin. Pharmacol.11, 439–445.PubMedGoogle Scholar
- Messer, P.W. and Petrov, D.A. 2013. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol.28, 659–669.PubMedGoogle Scholar
- Mezger, A., Gullberg, E., Goransson, J., Zorzet, A., Herthnek, D., Tano, E., Nilsson, M., Andersson, D.I. 2015. A general method for rapid determination of antibiotic susceptibility and species in bacterial infections. J. Clin. Microbiol.53, 425–432.PubMedPubMedCentralGoogle Scholar
- O’Toole, D.K. 2014. The natural environment may be the most important source of antibiotic resistance genes. MBio5, e01285–14.PubMedPubMedCentralGoogle Scholar
- Pallecchi, L., Bartoloni, A., Riccobono, E., Fernandez, C., Mantella, A., Magnelli, D., Mannini, D., Strohmeyer, M., Bartalesi, F., Rodriguez, H., et al. 2012. Quinolone resistance in absence of selective pressure: the experience of a very remote community in the Amazon forest. PLoS Negl. Trop. Dis.6, e1790.PubMedPubMedCentralGoogle Scholar
- Pennings, P.S. and Hermisson, J. 2006a. Soft sweeps II-molecular population genetics of adaptation from recurrent mutation or migration. Mol. Biol. Evol.23, 1076–1084.PubMedGoogle Scholar
- Pennings, P.S. and Hermisson, J. 2006b. Soft sweeps III: the signature of positive selection from recurrent mutation. PLoS Genet.2, e186.PubMedPubMedCentralGoogle Scholar
- Poteete, A.R., Sinha, S., and Redfield, R.J. 2012. Natural DNA uptake by Escherichia coli. PLoS One7, e35620.Google Scholar
- Redgrave, L.S., Sutton, S.B., Webber, M.A., and Piddock, L.J. 2014. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol.22, 438–445.PubMedGoogle Scholar
- Ruiz, J., Gomez, J., Navia, M.M., Ribera, A., Sierra, J.M., Marco, F., Mensa, J., Vila, J., et al. 2002. High prevalence of nalidixic acid resistant, ciprofloxacin susceptible phenotype among clinical isolates of Escherichia coli and other Enterobacteriaceae. Diagn. Microbiol. Infect. Dis.42, 257–261.PubMedGoogle Scholar
- Schmitt, M.W., Kennedy, S.R., Salk, J.J., Fox, E.J., Hiatt, J.B., and Loeb, L.A. 2012. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl. Acad. Sci. USA109, 14508–14513.PubMedGoogle Scholar
- Solomon, J. and Grossman, A. 1996. Who’s competent and when: regulation of natural genetic competence in bacteria. Trends Genet.12, 150–155.PubMedGoogle Scholar
- Wichmann, F., Udikovik-Kolic, N., Andrew, S., and Handelsman, J. 2014. Reply to “The natural environment may be the most important source of antibiotic resistance genes”. MBio5, e01421–14.PubMedPubMedCentralGoogle Scholar
- Wilson, B.A., Pennings, P.S., and Petrov, D.A. 2017. Soft selective sweeps in evolutionary rescue. Genetics205, 1573–1586.PubMedPubMedCentralGoogle Scholar
- Yamada, K., Saito, R., Muto, S., Kashiwa, M., Tamamori, Y., and Fujisaki, S. 2017. Molecular characterization of fluoroquinolone-resistant Moraxella catarrhalis variants generated in vitro by step-wise selection. Antimicrob. Agents Chemother.61, e01336–17.PubMedPubMedCentralGoogle Scholar
- Zhang, G., Wang, C., Sui, Z., and Feng, J. 2015. Insights into the evolutionary trajectories of fluoroquinolone resistance in Streptococcus pneumoniae. J. Antimicrob. Chemother.70, 2499–2506.PubMedGoogle Scholar
- Zhao, X. and Drlica, K. 2001. Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin. Infect. Dis.33, S147–156.PubMedGoogle Scholar