Partial characteristics of hemolytic factors secreted from airborne Aspergillus and Penicillium, and an enhancement of hemolysis by Aspergillus micronesiensis CAMP-like factor via Staphylococcus aureus-sphingomyelinase

  • Sumonrat Kaveemongkonrat
  • Kwanjit Duangsonk
  • Jos Houbraken
  • Phimchat Suwannaphong
  • Nongnuch VanittanakomEmail author
  • Malee MekaprateepEmail author


One of the advantages for initial survival of inhaled fungal spores in the respiratory tract is the ability for iron acquisition via hemolytic factor-production. To examine the ability of indoor Aspergillus and Penicillium affecting hemolysis, the secreted factors during the growth of thirteen strains from eight species were characterized in vitro for their hemolytic activity (HA) and CAMP-like reaction. The hemolytic index of HA on human blood agar of Aspergillus micronesiensis, Aspergillus wentii, Aspergillus westerdijkiae, Penicillium citrinum, Penicillium copticola, Penicillium paxilli, Penicillium steckii, and Penicillium sumatrense were 1.72 ± 0.34, 1.61 ± 0.41, 1.69 ± 0.16, 1.58 ± 0.46, 3.10 ± 0.51, 1.22 ± 0.19, 2.55 ± 0.22, and 1.90 ± 0.14, respectively. The secreted factors of an Aspergillus wentii showed high HA when grown in undernourished broth at 25°C at an exponential phase and were heat sensitive. Its secreted proteins have an estimated relative molecular weight over 50 kDa. Whereas, the factors of Penicillium steckii were secreted in a similar condition at a late exponential phase but showed low HA and heat tolerance. In a CAMP-like test with sheep blood, the synergistic hemolytic reactions between most tested mold strains and Staphylococcus aureus were identified. Moreover, the enhancement of α-hemolysis of Staphylococcus aureus could occur through the interaction of Staphylococcus aureus-sphingomyelinase and CAMP-like factors secreted from Aspergillus micronesiensis. Further studies on the characterization of purified hemolytic- and CAMP-like-factors secreted from Aspergillus wentii and Aspergillus micronesiensis may lead to more understanding of their involvement of hemolysis and cytolysis for fungal survival prior to pathogenesis.


hemolytic index CAMP-like Aspergillus micronesiensis Aspergillus wentii Staphylococcus aureus sphingomyelinase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was funded by the Faculty of Medicine, Chiang Mai University. We would like to thank Assoc. Prof. Prasit Tharavichitkul and Miss Piyawan Takarn for providing bacterial samples, Assist. Prof. Bongkotwon Sutabhaha for providing a modified air sampler and mold identification method, and Miss Siriporn Jongkae for her help in air sampling and mold identification.


  1. Atagazli, L., Greenhill, A.R., Melrose, W., Pue, A.G., and Warner, J.M. 2010. Is Penicillium citrinum implicated in sago hemolytic disease? SE. J. Trop. Med. 41, 641–646.Google Scholar
  2. Barratt, R.W., Johnson, G.B., and Ogata, W.N. 1965. Wild-type and mutant stocks of Aspergillus nidulans. Genetics 52, 233–246.PubMedPubMedCentralGoogle Scholar
  3. Bernheimer, A.W., Linder, R., and Avigad, L.S. 1979. Nature and mechanism of action of the CAMP protein of group B streptococci. Infect. Immun. 23, 838–844.PubMedPubMedCentralGoogle Scholar
  4. Christie, R., Atkins, N.E., and Munch-Petersen, E. 1944. A note on a lytic phenomenon shown by group B streptococci. Aust. J. Exp. Biol. Med. Sci. 22, 197–200.CrossRefGoogle Scholar
  5. Deriu, E., Liu, J.Z., Pezeshki, M., Edwards, R.A., Ochoa, R.J., Contreras, H., Libby, S.J., Fang, F.C., and Raffatellu, M. 2013. Probiotic bacteria reduce Salmonella Typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14, 26–37.CrossRefGoogle Scholar
  6. Doegen, A., Guemral, R., and Ilkit, M. 2015. Haemolytic and cohaemolytic (CAMP-like) activity in Dermatophytes. Mycoses 58, 40–47.CrossRefGoogle Scholar
  7. Donohue, M., Chung, Y., Magnuson, M.L., Ward, M., Selgrade, M.J., and Vesper, S. 2005. Hemolysin chrysolysin from Penicillium chrysogenum promotes inflammatory response. Int. J. Hyg. Environ. Health 208, 279–285.CrossRefGoogle Scholar
  8. Donohue, M., Wei, W., Wu, J., Zawia, N.H., Hud, N., De Jesus, V., Schmechel, D., Hettick, J.M., Beezhold, D.H., and Vesper, S. 2006. Characterization of nigerlysin, hemolysin produced by Aspergillus niger, and effect on mouse neuronal cells in vitro. Toxicology 219, 150–155.CrossRefGoogle Scholar
  9. Eduard, W. 2009. Fungal spores: a critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit. Rev. Toxicol. 39, 799–864.CrossRefGoogle Scholar
  10. Houbraken, J.A.M.P., Frisvad, J.C., and Samson, R.A. 2010. Taxonomy of Penicillium citrinum and related species. Fungal Divers. 44, 117–133.CrossRefGoogle Scholar
  11. Juntachai, W., Kummasook, A., Mekaprateep, M., and Kajiwara, S. 2014. Identification of the haemolytic activity of Malassezia species. Mycoses 57, 163–168.CrossRefGoogle Scholar
  12. Lacey, M.E. and West, J.S. 2006. The Aerobiology Pathway, pp. 15–34. In Lacey, M.E. and West, J.S. (eds.), The Air Spora: A manual for catching and identifying airborne biological particles. Springer, New York, USA.CrossRefGoogle Scholar
  13. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefGoogle Scholar
  14. Lo, C.W., Lai, Y.K., Liu, Y.T., Gallo, R.L., and Huang C.M. 2011. Staphylococcus aureus hijacks a skin commensal to intensify its virulence: immunization targeting β-hemolysin and CAMP factor. J. Invest. Dermatol. 131, 401–409.CrossRefGoogle Scholar
  15. Luo, G., Samaranayake, L.P., and Yau, J.Y. 2001. Candida species exhibit differential in vitro hemolytic activities. J. Clin. Microbiol. 39, 2971–2974.CrossRefGoogle Scholar
  16. Malcok, H.K., Aktas, E., Ayyildiz, A., Yigit, N., and Yazgi, H. 2009. Hemolytic activities of the Candida species in liquid medium. Eurasian J. Med. 41, 95–98.PubMedPubMedCentralGoogle Scholar
  17. Malmstrom, J., Christophersen, C., and Frisvad, J.C. 2000. Secondary metabolites characteristic of Penicillium citrinum, Penicillium steckii and related species. Phytochemistry 54, 301–309.CrossRefGoogle Scholar
  18. Nayak, A.P., Green, B.J., and Beezhold, D.H. 2013. Fungal hemolysins. Med. Mycol. 51, 1–16.CrossRefGoogle Scholar
  19. Nguyen, L.D., Viscogliosi, E., and Delhaes, L. 2015. The lung mycobiome: an emerging field of the human respiratory microbiome. Front. Microbiol. 6, 89.PubMedPubMedCentralGoogle Scholar
  20. Ramsey, M.M., Freire, M.O., Gabrilska, R.A., Rumbaugh, K.P., and Lemon, K.P. 2016. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front. Microbiol. 7, 1230.CrossRefGoogle Scholar
  21. Schaufuss, P., Brasch, J., and Steller, U. 2005. Dermatophytes can trigger cooperative (CAMP-like) haemolytic reactions. Br. J. Dermatol. 153, 584–590.CrossRefGoogle Scholar
  22. Schaufuss, P., Müller, F., and Valentin-Weigand, P. 2007. Isolation and characterization of a haemolysin from Trichophyton mentagrophytes. Vet. Microbiol. 122, 342–349.CrossRefGoogle Scholar
  23. Schaufuss, P. and Steller, U. 2003. Hemolytic activities of Trichophyton species. Med. Mycol. 41, 511–516.CrossRefGoogle Scholar
  24. Shipton, W.A., Greenhill, A.R., and Warner, J.M. 2013. Sago hemolytic diseases: towards understanding a novel food-borne toxicosis. PNG. Med. J. 56, 166–177.Google Scholar
  25. Van Emon, J.M., Reed, A.W., Yike, I., and Vesper, S.J. 2003. ELISA measurement of stachylysin in serum to quantify human exposures to the indoor mold Stachybotrys chartarum. J. Occup. En viron. Med. 45, 582–591.CrossRefGoogle Scholar
  26. Vanittanakom, N., Vanittanakom, P., and Hay, R.J. 2002. Rapid identification of Penicillium marneffei by PCR-based detection of specific sequences on the rRNA gene. J. Clin. Microbiol. 40, 1739–1742.CrossRefGoogle Scholar
  27. Vesper, S.J. and Vesper, M.J. 2002. Stachylysin may be a cause of hemorrhaging in humans exposed to Stachybotrys chartarum. Infect. Immun. 70, 2065–2069.CrossRefGoogle Scholar
  28. Wartenberg, D., Lapp, K., Jacobsen, I.D., Dahse, H.M., Kniemever, O., Heinekamp, T., and Krakhage, A.A. 2011. Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein. Int. J. Med. Microbiol. 301, 602–611.CrossRefGoogle Scholar
  29. White, T.J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322. In Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. (eds.), PCR Protocols. Academic Press, San Diego, USA.Google Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  • Sumonrat Kaveemongkonrat
    • 1
  • Kwanjit Duangsonk
    • 1
  • Jos Houbraken
    • 2
  • Phimchat Suwannaphong
    • 1
  • Nongnuch Vanittanakom
    • 1
    Email author
  • Malee Mekaprateep
    • 1
    Email author
  1. 1.Department of Microbiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  2. 2.Department of Applied and Industrial MycologyWesterdijk Fungal Biodiversity InstituteUtrechtThe Netherlands

Personalised recommendations