Journal of Microbiology

, Volume 57, Issue 6, pp 509–520 | Cite as

Gastrointestinal microbiota alteration induced by Mucor circinelloides in a murine model

  • Katherine D. Mueller
  • Hao Zhang
  • Christian R. Serrano
  • R. Blake Billmyre
  • Eun Young Huh
  • Philipp Wiemann
  • Nancy P. Keller
  • Yufeng Wang
  • Joseph Heitman
  • Soo Chan LeeEmail author
Microbial Pathogenesis and Host-Microbe Interaction


Mucor circinelloides is a pathogenic fungus and etiologic agent of mucormycosis. In 2013, cases of gastrointestinal illness after yogurt consumption were reported to the US FDA, and the producer found that its products were contaminated with Mucor. A previous study found that the Mucor strain isolated from an open contaminated yogurt exhibited virulence in a murine systemic infection model and showed that this strain is capable of surviving passage through the gastrointestinal tract of mice. In this study, we isolated another Mucor strain from an unopened yogurt that is closely related but distinct from the first Mucor strain and subsequently examined if Mucor alters the gut microbiota in a murine host model. DNA extracted from a ten-day course of stool samples was used to analyze the microbiota in the gastrointestinal tracts of mice exposed via ingestion of Mucor spores. The bacterial 16S rRNA gene and fungal ITS1 sequences obtained were used to identify taxa of each kingdom. Linear regressions revealed that there are changes in bacterial and fungal abundance in the gastrointestinal tracts of mice which ingested Mucor. Furthermore, we found an increased abundance of the bacterial genus Bacteroides and a decreased abundance of the bacteria Akkermansia muciniphila in the gastrointestinal tracts of exposed mice. Measurements of abundances show shifts in relative levels of multiple bacterial and fungal taxa between mouse groups. These findings suggest that exposure of the gastrointestinal tract to Mucor can alter the microbiota and, more importantly, illustrate an interaction between the intestinal mycobiota and bacteriota. In addition, Mucor was able to induce increased permeability in epithelial cell monolayers in vitro, which might be indicative of unstable intestinal barriers. Understanding how the gut microbiota is shaped is important to understand the basis of potential methods of treatment for gastrointestinal illness. How the gut microbiota changes in response to exposure, even by pathogens not considered to be causative agents of food-borne illness, may be important to how commercial food producers prevent and respond to contamination of products aimed at the public. This study provides evidence that the fungal microbiota, though understudied, may play an important role in diseases of the human gut.


microbiota mycobiota mycobiome Mucor fungi in the guts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8682_MOESM1_ESM.pdf (1.4 mb)
Supplementary material, approximately 1.43 MB.


  1. Aboltins, C.A., William, A.B.P., and Solano, T.R. 2006. Fungemia secondary to gastrointestinal Mucor indicus infection. Clin. Infect. Dis. 42, 154–155.CrossRefGoogle Scholar
  2. Alston, T.A., Mela, L., and Bright, H.J. 1977. 3–Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc. Natl. Acad. Sci. USA 74, 3767–3771.Google Scholar
  3. Bamias, G., Okazawa, A., Rivera–Nieves, J., Arseneau, K.O., De La Rue, S.A., Pizarro, T.T., and Cominelli, F. 2007. Commensal bacteria exacerbate intestinal inflammation but are not essential for the development of murine ileitis. J. Immunol. 178, 1809–1818.CrossRefGoogle Scholar
  4. Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300.Google Scholar
  5. Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R., Mills, D.A., and Caporaso, J.G. 2013. Quality–filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–U11.CrossRefGoogle Scholar
  6. Botschuijver, S., Roeselers, G., Levin, E., Jonkers, D.M., Welting, O., Heinsbroek, S.E.M., de Weerd, H.H., Boekhout, T., Fornai, M., Masclee, A.A., et al. 2017. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology 153, 1026–1039.CrossRefGoogle Scholar
  7. Bray, J.R. and Curtis, J.T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monograph. 27, 326–349.CrossRefGoogle Scholar
  8. Brouillet, E., Jacquard, C., Bizat, N., and Blum, D. 2005. 3Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J. Neurochem. 95, 1521–1540.Google Scholar
  9. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg–Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., et al. 2012. Ultra–high–throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624.CrossRefGoogle Scholar
  10. Chao, A. 1984. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270.Google Scholar
  11. Chayakulkeeree, M., Ghannoum, M.A., and Perfect, J.R. 2006. Zygomycosis: the re–emerging fungal infection. Eur. J. Clin. Microbiol. Infect. Dis. 25, 215–229.CrossRefGoogle Scholar
  12. Chiaro, T.R., Soto, R., Zac Stephens, W., Kubinak, J.L., Petersen, C., Gogokhia, L., Bell, R., Delgado, J.C., Cox, J., Voth, W., et al. 2017. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Sci. Transl. Med. 9, 9044.CrossRefGoogle Scholar
  13. Chichlowski, M. and Rudolph, C. 2015. Visceral pain and gastrointestinal microbiome. J. Neurogastroenterol. Motil. 21, 172–181.CrossRefGoogle Scholar
  14. Cook, R.D. 1977. Detection of influential observation in linear regression. Technometrics 19, 15–18.Google Scholar
  15. Devaraj, S., Hemarajata, P., and Versalovic, J. 2013. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin. Chem. 59, 617–628.CrossRefGoogle Scholar
  16. Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.CrossRefGoogle Scholar
  17. Erdogan, A. and Rao, S.S.C. 2015. Small intestinal fungal overgrowth. Curr. Gastroenterol. Rep. 17, 16.CrossRefGoogle Scholar
  18. Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J.P., Art, C., Bindels, L.B., Guiot, Y., Derrien, M.M.N., Muccioli, G.G., Delzenne, N.M., et al. 2013. Crosstalk between Akkermansia muciniphila and intestinal epithelium controls diet–induced obesity. Proc. Natl. Acad. Sci. USA 110, 9066–9071.CrossRefGoogle Scholar
  19. FDA. 2013. Chobani, Inc. voluntarily recalls greek yogurt because of product concerns.Google Scholar
  20. Findley, K., Oh, J., Yang, J., Conlan, S., Deming, C., Meyer, J.A., Schoenfeld, D., Nomicos, E., Park, M., Program, N.C.S., et al. 2013. Human skin fungal diversity. Nature 498, 367–370.Google Scholar
  21. Gweon, H.S., Oliver, A., Taylor, J., Booth, T., Gibbs, M., Read, D.S., Griffiths, R.I., Schonrogge, K., and Bunce, M. 2015. PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 6, 973–980.CrossRefGoogle Scholar
  22. He, F., Zhang, S., Qian, F., and Zhang, C. 1995. Delayed dystonia with striatal CT lucencies induced by a mycotoxin (3–nitropropionic acid). Neurology 45, 2178–2183.CrossRefGoogle Scholar
  23. Hoarau, G., Mukherjee, P.K., Gower–Rousseau, C., Hager, C., Chandra, J., Retuerto, M.A., Neut, C., Vermeire, S., Clemente, J., Colombel, J.F., et al. 2016. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio 7, e01250–16.Google Scholar
  24. Hollmann, M., Razzazi–Fazeli, E., Grajewski, J., Twaruzek, M., Sulyok, M., and Böhm, J. 2008. Detection of 3–nitropropionic acid and cytotoxicity in Mucor circinelloides. Mycotoxin Res. 24, 140–150.CrossRefGoogle Scholar
  25. Iliev, I.D., Funari, V.A., Taylor, K.D., Nguyen, Q., Reyes, C.N., Strom, S.P., Brown, J., Becker, C.A., Fleshner, P.R., Dubinsky, M., et al. 2012. Interactions between commensal fungi and the C–type lectin receptor Dectin–1 influence colitis. Science 336, 1314–1317.CrossRefGoogle Scholar
  26. James, T.Y., Kauff, F., Schoch, C.L., Matheny, P.B., Hofstetter, V., Cox, C.J., Celio, G., Gueidan, C., Fraker, E., Miadlikowska, J., et al. 2006. Reconstructing the early evolution of fungi using a sixgene phylogeny. Nature 443, 818–822.CrossRefGoogle Scholar
  27. Kim, J.J., Shajib, M.S., Manocha, M.M., and Khan, W.I. 2012. Investigating intestinal inflammation in DSS–induced model of IBD. J. Vis. Exp. 60, 3678.Google Scholar
  28. Kleiman, S.C., Bulik–Sullivan, E.C., Glenny, E.M., Zerwas, S.C., Huh, E.Y., Tsilimigras, M.C.B., Fodor, A.A., Bulik, C.M., and Carroll, I.M. 2017. The gut–brain axis in healthy females: lack of significant association between microbial composition and diversity with psychiatric measures. PLoS One 12, e0170208.CrossRefGoogle Scholar
  29. Kleiman, S.C., Watson, H.J., Bulik–Sullivan, E.C., Huh, E.Y., Tarantino, L.M., Bulik, C.M., and Carroll, I.M. 2015. The intestinal microbiota in acute anorexia nervosa and during renourishment: relationship to depression, anxiety, and eating disorder psychopathology. Psychosom. Med. 77, 969–981.CrossRefGoogle Scholar
  30. Kõljalg, U., Larsson, K.H., Abarenkov, K., Nilsson, R.H., Alexander, I.J., Eberhardt, U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., et al. 2005. UNITE: a database providing web–based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 166, 1063–1068.CrossRefGoogle Scholar
  31. Kumamoto, C.A. 2011. Inflammation and gastrointestinal Candida colonization. Curr. Opin. Microbiol. 14, 386–391.CrossRefGoogle Scholar
  32. Lazar, S.P., Lukaszewicz, J.M., Persad, K.A., and Reinhardt, J.F. 2014. Rhinocerebral Mucor circinelloides infection in immunocompromised patient following yogurt ingestion. Del. Med. J. 86, 245.Google Scholar
  33. Lee, S.C., Billmyre, R.B., Li, A., Carson, S., Sykes, S.M., Huh, E.Y., Mieczkowski, P., Ko, D.C., Cuomo, C.A., and Heitman, J. 2014. Analysis of a food–borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt. mBio 5, e01390–14.Google Scholar
  34. Leonardi, I., Li, X., Semon, A., Li, D., Doron, I., Putzel, G., Bar, A., Prieto, D., Rescigno, M., McGovern Dermot, P.B., et al. 2018. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science 359, 232–236.CrossRefGoogle Scholar
  35. Li, Q., Wang, C., Tang, C., He, Q., Li, N., and Li, J. 2014. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J. Clin. Gastroenterol. 48, 513–523.Google Scholar
  36. Liguori, G., Lamas, B., Richard, M.L., Brandi, G., da Costa, G., Hoffmann, T.W., Di Simone, M.P., Calabrese, C., Poggioli, G., Langella, P., et al. 2016. Fungal dysbiosis in mucosa–associated microbiota of Crohn’s disease patients. J. Crohns Colitis 10, 296.CrossRefGoogle Scholar
  37. Maharshak, N., Huh, E.Y., Paiboonrungruang, C., Shanahan, M., Thurlow, L., Herzog, J., Djukic, Z., Orlando, R., Pawlinski, R., Ellermann, M., et al. 2015. Enterococcus faecalis gelatinase mediates intestinal permeability via protease–activated receptor 2. Infect. Immun. 83, 2762–2770.CrossRefGoogle Scholar
  38. Miyoshi, J., Sofia, M.A., and Pierre, J.F. 2018. The evidence for fungus in Crohn’s disease pathogenesis. Clin. J. Gastroenterol. 11, 449–456.CrossRefGoogle Scholar
  39. Morin–Sardin, S., Nodet, P., Coton, E., and Jany, J.L. 2017. Mucor: A Janus–faced fungal genus with human health impact and industrial applications. Fungal Biol. Rev. 31, 12–32.CrossRefGoogle Scholar
  40. Muir, A.D. and Majak, W. 1984. Quantitative determination of 3–nitropropionic acid and 3–nitropropanol in plasma by HPLC. Toxicol. Lett. 20, 133–136.CrossRefGoogle Scholar
  41. Odenwald, M.A. and Turner, J.R. 2013. Intestinal permeability defects: Is it time to treat? Clin. Gastroenterol. Hepatol. 11, 1075–1083.CrossRefGoogle Scholar
  42. Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P., O’Hara, R., Simpson, G., Solymos, P., Stevens, M., and Wagner, H. 2012. Community ecology package. R package version 2.0–2. R Development Core Team, http://www.r– Scholar
  43. Ott, S.J., Kühbacher, T., Musfeldt, M., Rosenstiel, P., Hellmig, S., Rehman, A., Drews, O., Weichert, W., Timmis, K.N., and Schreiber, S. 2008. Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scan. J. Gastroenterol. 43, 831–841.CrossRefGoogle Scholar
  44. RCoreTeam. 2017. R: a language and environment for statistical computing.Google Scholar
  45. Reunanen, J., Kainulainen, V., Huuskonen, L., Ottman, N.A., Belzer, C., Huhtinen, H., de Vos, W.M., and Satokari, R.M. 2015. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl. Environ. Microbiol. 81, 3655–3662.Google Scholar
  46. Roden, M.M., Zaoutis, T.E., Buchanan, W.L., Knudsen, T.A., Sarkisova, T.A., Schaufele, R.L., Sein, M., Sein, T., Chiou, C.C., Chu, J.H., et al. 2005. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin. Infect. Dis. 41, 634–653.CrossRefGoogle Scholar
  47. Rodriguez, M.M., Perez, D., Chaves, F.J., Esteve, E., Marin–Garcia, P., Xifra, G., Vendrell, J., Jove, M., Pamplona, R., Ricart, W., et al. 2015. Obesity changes the human gut mycobiome. Scientific Rep. 5, 14600.CrossRefGoogle Scholar
  48. Saitoh, S., Noda, S., Aiba, Y., Takagi, A., Sakamoto, M., Benno, Y., and Koga, Y. 2002. Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease. Clin. Diagn. Lab. Immunol. 9, 54–59.Google Scholar
  49. Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.CrossRefGoogle Scholar
  50. Snyder, A.B., Churey, J.J., and Worobo, R.W. 2016. Characterization and control of Mucor circinelloides spoilage in yogurt. Int. J. Food Microbiol. 228, 14–21.CrossRefGoogle Scholar
  51. Sokol, H., Leducq, V., Aschard, H., Pham, H.P., Jegou, S., Landman, C., Cohen, D., Liguori, G., Bourrier, A., Nion–Larmurier, I., et al. 2017. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048.CrossRefGoogle Scholar
  52. Spatafora, J.W., Chang, Y., Benny, G.L., Lazarus, K., Smith, M.E., Berbee, M.L., Bonito, G., Corradi, N., Grigoriev, I., Gryganskyi, A., et al. 2016. A phylum–level phylogenetic classification of zygomycete fungi based on genome–scale data. Mycologia 108, 1028–1046.CrossRefGoogle Scholar
  53. Szajewska, H. and Mrukowicz, J. 2005. Meta–analysis: non–pathogenic yeast Saccharomyces boulardii in the prevention of antibiotic–associated diarrhoea. Aliment. Pharmacol. Ther. 22, 365–372.CrossRefGoogle Scholar
  54. USAToday. 2013. FDA receives dozens of reports of illness from yogurt.Google Scholar
  55. Walters, W.A., Pirrung, M., Peña, A.G., Huttley, G.A., Zaneveld, J., Kuczynski, J., Knights, D., Bittinger, K., Costello, E.K., Turnbaugh, P.J., et al. 2010. QIIME allows analysis of high–throughput community sequencing data. Nat. Methods 7, 335–336.CrossRefGoogle Scholar
  56. Wheeler, M.L., Limon, J.J., Bar, A.S., Leal, C.A., Gargus, M., Tang, J., Brown, J., Funari, V.A., Wang, H.L., Crother, T.R., et al. 2016. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe 19, 865–873.CrossRefGoogle Scholar
  57. Wu, S., Lim, K.C., Huang, J., Saidi, R.F., and Sears, C.L. 1998. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E–cadherin. Proc. Natl. Acad. Sci. USA 95, 14979–14984.CrossRefGoogle Scholar
  58. Young, V.B. and Schmidt, T.M. 2004. Antibiotic–associated diarrhea accompanied by large–scale alterations in the composition of the fecal microbiota. J. Clin. Microbiol. 42, 1203–1206.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  • Katherine D. Mueller
    • 1
  • Hao Zhang
    • 1
  • Christian R. Serrano
    • 1
  • R. Blake Billmyre
    • 2
  • Eun Young Huh
    • 1
  • Philipp Wiemann
    • 3
  • Nancy P. Keller
    • 3
  • Yufeng Wang
    • 1
  • Joseph Heitman
    • 2
  • Soo Chan Lee
    • 1
    Email author
  1. 1.South Texas Center for Emerging Infectious Diseases (STCEID), Department of BiologyThe University of Texas at San AntonioSan AntonioUSA
  2. 2.Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA
  3. 3.Department of Medical Microbiology and ImmunologyUniversity of Wisconsin at MadisonMadisonUSA

Personalised recommendations