Advertisement

Dynamics of microbial communities and CO2 and CH4 fluxes in the tundra ecosystems of the changing Arctic

  • Min Jung Kwon
  • Ji Young Jung
  • Binu M. Tripathi
  • Mathias Göckede
  • Yoo Kyung Lee
  • Mincheol KimEmail author
Minireview

Abstract

Arctic tundra ecosystems are rapidly changing due to the amplified effects of global warming within the northern high latitudes. Warming has the potential to increase the thawing of the permafrost and to change the landscape and its geochemical characteristics, as well as terrestrial biota. It is important to investigate microbial processes and community structures, since soil microorganisms play a significant role in decomposing soil organic carbon in the Arctic tundra. In addition, the feedback from tundra ecosystems to climate change, including the emission of greenhouse gases into the atmosphere, is substantially dependent on the compositional and functional changes in the soil microbiome. This article reviews the current state of knowledge of the soil microbiome and the two most abundant greenhouse gas (CO2 and CH4) emissions, and summarizes permafrost thaw-induced changes in the Arctic tundra. Furthermore, we discuss future directions in microbial ecological research coupled with its link to CO2 and CH4 emissions.

Keywords

soil microbiome CO2 and CH4 emission permafrost thaw climate change Arctic tundra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, B.W. and Jones, J.B. 2015. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob. Chang. Biol. 21, 4570–4587.CrossRefGoogle Scholar
  2. Allan, J., Ronholm, J., Mykytczuk, N.C.S., Greer, C.W., Onstott, T.C., and Whyte, L.G. 2014. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils. Environ. Microbiol. Rep. 6, 136–144.CrossRefGoogle Scholar
  3. Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia, N.A., Bodegom P.M., Bengtsson-Palme, J., Anslan, S., Coelho, L.P., Harend, H., et al. 2018. Structure and function of the global topsoil microbiome. Nature 560, 233–237.CrossRefGoogle Scholar
  4. Bates, S.T., Berg-Lyons, D., Capraso, J.G., Walters, W.A., Knight, R., and Fierer, N. 2011. Examining the global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917.CrossRefPubMedGoogle Scholar
  5. Bellemain, E., Davey, M.L., Kauserud, H., Epp, L.S., Boessenkool, S., Coissac, E., Geml, J., Edwards, M., Willerslev, E., Gussarova, G., et al. 2013. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ. Microbiol. 15, 1176–1189.Google Scholar
  6. Biasi, C., Jokinen, S., Marushchak, M.E., Hämäläinen, K., Trubnikova, T., Oinonen, M., and Martikainen, P.J. 2014. Microbial respiration in Arctic upland and peat soils as a source of atmospheric carbon dioxide. Ecosystems 17, 112–126.CrossRefGoogle Scholar
  7. Biasi, C., Rusalimova, O., Meyer, H., Kaiser, C., Wanek, W., Barsukov, P., Junger, H., and Richter, A. 2005. Temperature-dependent shift from labile to recalcitrant carbon sources of Arctic heterotrophs. Rapid Commun. Mass Spectrom. 19, 1401–1408.CrossRefPubMedGoogle Scholar
  8. Billings, W.D., Peterson, K.M., Shaver, G.R., and Trent, A.W. 1977. Root growth, respiration, and carbon dioxide evolution in an Arctic tundra soil. Arct. Alp. Res. 9, 129–137.CrossRefGoogle Scholar
  9. Blake, L.I., Tveit, A., Øvreås, L., Head, I.M., and Gray, N.D. 2015. Response of methanogens in Arctic sediments to temperature and methanogenic substrate availability. PLoS One 10, e0129733.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Blazewicz, S.J., Petersen, D.G., Waldrop, M.P., and Firestone, M.K. 2012. Anaerobic oxidation of methane in tropical and boreal soils: ecological significance in terrestrial methane cycling. J. Geophys. Res. Biogeosci. 117, G02033.CrossRefGoogle Scholar
  11. Bottos, E.M., Kennedy, D.W., Romero, E.B., Fansler, S.J., Brown, J.M., Bramer, L.M., Chu, R.K., Tfaily, M.M., Jansson, J.K., and Stegen, J.C. 2018. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94, fiy110.CrossRefGoogle Scholar
  12. Buckeridge, K.M., Cen, Y.P., Layzell, D.B., and Grogan, P. 2010a. Soil biogeochemistry during the early spring in low arctic mesic tundra and the impacts of deepened snow and enhanced nitrogen availability. Biogeochemistry 99, 127–141.CrossRefGoogle Scholar
  13. Buckeridge, K.M., Zufelt, E., Chu, H., and Grogan, P. 2010b. Soil nitrogen cycling rates in low arctic shrub tundra are enhanced by litter feedbacks. Plant Soil 330, 407–421.CrossRefGoogle Scholar
  14. Capek, P., Diáková, K., Dickopp, J.E., Bárta, J., Wild, B., Schnecker, J., Alves, R.J.E., Aiglsdorfer, S., Guggenberger, G., Gentsch, N., et al. 2015. The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil Biol. Biochem. 90, 19–29.CrossRefGoogle Scholar
  15. Chen, L., Liu, L., Mao, C., Qin, S., Wang, J., Liu, F., Blagodatsky, S., Yang, G., Zhang, Q., Zhang, D., et al. 2018. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat. Commun. 9, 3951.Google Scholar
  16. Christiansen, J.R., Romero, A.J.B., Jørgensen, N.O.G., Glaring, M.A., Jørgensen, C.J., Berg, L.K., and Elberling, B. 2015. Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry 122, 15–33.CrossRefGoogle Scholar
  17. Chu, H., Fierer, N., Lauber, C.L., Caporaso, J., Knight, R., and Grogan, P. 2010. Soil bacterial diversity in the arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12, 2998–3006.CrossRefPubMedGoogle Scholar
  18. Chu, H., Neufeld, J.D., Walker, V.K., and Grogan, P. 2011. The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low arctic tundra landscape. Soil Sci. Soc. Am. J. 75, 1756–1765.CrossRefGoogle Scholar
  19. Conrad, R. 1999. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol. Ecol. 28, 193–202.CrossRefGoogle Scholar
  20. Coolen, M.J.L. and Orsi, W.D. 2015. The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front. Microbiol. 6, 197.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dedysh, S.N., Kulichevskaya, I.S., Serkebaeva, Y.M., Mityaeva, M.A., Sorokin, V.V., Suzina, N.E., Rijpstra, W.I.C., and Damsté, J.S.S. 2012. Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. Int. J. Syst. Evol. Microbiol. 62, 654–664.CrossRefPubMedGoogle Scholar
  22. Deng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., Yuan, M., Yin, H., He, Z., Wu, L., and Schuur, E.A.G. 2015. Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska. Mol. Ecol. 24, 222–234.CrossRefPubMedGoogle Scholar
  23. Diáková, K., Capek, P., Kohoutová, I., Mpamah, P.A., Bárta, J., Biasi, C., Martikainen, P.J., and Šantrucková, H. 2016. Heterogeneity of carbon loss and its temperature sensitivity in East-European subarctic tundra soils. FEMS Microbiol. Ecol. 92, fiw140.CrossRefPubMedGoogle Scholar
  24. Eckhardt, T., Knoblauch, C., Kutzbach, L., Simpson, G., Abakumov, E., and Pfeiffer, E.M. 2018. Partitioning CO2 net ecosystem exchange fluxes on the microsite scale in the Lena River Delta, Siberia. Biogeosci. Discuss. DOI: https://doi.org/10.5194/bg-2018-311.Google Scholar
  25. Ejarque, E. and Abakumov, E. 2016. Stability and biodegradability of organic matter from Arctic soils of Western Siberia: Insights from 13C-NMR spectroscopy and elemental analysis. Solid Earth 7, 153–165.CrossRefGoogle Scholar
  26. Fey, A. and Conrad, R. 2000. Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl. Environ. Microbiol. 66, 4790–4797.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fierer, N. and Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631.CrossRefGoogle Scholar
  28. Finger, R.A., Turetsky, M.R., Kielland, K., Ruess, R.W., Mack, M.C., and Euskirchen, E.S. 2016. Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. J. Ecol. 104, 1542–1554.CrossRefGoogle Scholar
  29. Ganzert, L., Jurgens, G., Münster, U., and Wagner, D. 2007. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol. Ecol. 59, 476–488.Google Scholar
  30. Gittel, A., Bárta, J., Kohoutová, I., Mikutta, R., Owens, S., Gilbert, J., Schnecker, J., Wild, B., Hannisdal, B., Maerz, J., et al. 2014a. Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J. 8, 841–853.CrossRefPubMedGoogle Scholar
  31. Gittel, A., Bárta, J., Kohoutova, I., Schnecker, J., Wild, B., Capek, P., Kaiser, C., Torsvik, V.L., Richter, A., and Schleper, C. 2014b. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland. Front. Microbiol. 5, 541.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Glissman, K., Chin, K.J., Casper, P., and Conrad, R. 2004. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature. Microb. Ecol. 48, 389–399.CrossRefPubMedGoogle Scholar
  33. Griffiths, R.I., Thomson, B.C., James, P., Bell, T., Bailey, M., and Whiteley, A.S. 2011. The bacterial biogeography of British soils. Environ. Microbiol. 13, 1642–1654.CrossRefPubMedGoogle Scholar
  34. Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., and Tyson, G.W. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Heal, O.W. 1999. Looking north: Current issues in Arctic soil ecology. Appl. Soil Ecol. 11, 107–109.CrossRefGoogle Scholar
  36. Hicks Pries, C.E., Schuur, E.A.G., and Crummer, K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using 13C and 14C. Glob. Chang. Biol. 19, 649–661.CrossRefGoogle Scholar
  37. Hodkinson, I.D. and Wookey, P. 1999. Functional ecology of soil organisms in tundra ecosystems: Towards the future. Appl. Soil Ecol. 11, 111–126.CrossRefGoogle Scholar
  38. Høj, L., Olsen, R.A., and Torsvik, V.L. 2005. Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78°N) as characterized by 16S rRNA gene fingerprinting. FEMS Microbiol. Ecol. 53, 89–101.CrossRefPubMedGoogle Scholar
  39. Høj, L., Olsen, R.A., and Torsvik, V.L. 2008. Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat. ISME J. 2, 37.CrossRefPubMedGoogle Scholar
  40. Høj, L., Rusten, M., Haugen, L.E., Olsen, R.A., and Torsvik, V.L. 2006. Effects of water regime on archaeal community composition in Arctic soils. Environ. Microbiol. 8, 984–996.Google Scholar
  41. Huang, J., Zhang, X., Zhang, Q., Lin, Y., Hao, M., Luo, Y., Zhao, Z., Yao, Y., Chen, X., Wang, L., et al. 2017. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Chang. 7, 875–879.CrossRefGoogle Scholar
  42. Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E.A.G., Ping, C.L., Schirrmeister, L., Grosse, G., Michaelson, G.J., Koven, C.D., et al. 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosci. 11, 6573–6593.CrossRefGoogle Scholar
  43. Hultman, J., Waldrop, M.P., Mackelprang, R., David, M.M., Mc-Farland, J., Blazewicz, S.J., Harden, J., Turetsky, M.R., McGuire, A.D., Shah, M.B., et al. 2015. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212.CrossRefGoogle Scholar
  44. Jansson, J.K. and Tas, N. 2014. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425.CrossRefPubMedGoogle Scholar
  45. Johnston, E.R., Rodriguez, R.L.M., Luo, C., Yuan, M.M., Wu, L., He, Z., Schuur, E.A.G., Luo, Y., Tiedje, J.M., Zhou, J., et al. 2016. Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem. Front. Microbiol. 7, 579.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jorgenson, M.T., Shur, Y.L., and Pullman, E.R. 2006. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, L02503.CrossRefGoogle Scholar
  47. Kim, H.M., Chae, N., Jung, J.Y., and Lee, Y.K. 2013. Isolation of facultatively anaerobic soil bacteria from Ny-Ålesund, Svalbard. Polar Biol. 36, 787–796.CrossRefGoogle Scholar
  48. Kim, M., Jung, J.Y., Laffly, D., Kwon, H.Y., and Lee, Y.K. 2017. Shifts in bacterial community structure during succession in a glacier foreland of the High Arctic. FEMS Microbiol. Ecol. 93, fiw213.CrossRefPubMedGoogle Scholar
  49. Kim, H.M., Lee, M.J., Jung, J.Y., Hwang, C.Y., Kim, M., Ro, H.M., Chun, J., and Lee, Y.K. 2016. Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra. J. Microbiol. 54, 713–723.CrossRefPubMedGoogle Scholar
  50. Kirtman, B., Power, S.B., Adedoyin, J.A., Boer, G.J., Bojariu, R., Camilloni, F.J., Doblas-Reyes, A.M., Kimoto, M., Meehl, G.A., Prather, M., et al. 2013. Near-term climate change: Projections and predictability, pp. 953–1028. In Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, USA.Google Scholar
  51. Krivushin, K.V., Shcherbakova, V.A., Petrovskaya, L.E., and Rivkina, E.M. 2010. Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int. J. Syst. Evol. Microbiol. 60, 455–459.CrossRefPubMedGoogle Scholar
  52. Kutzbach, L., Wagner, D., and Pfeiffer, E.M. 2004. Effect of microrilief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 69, 341–362.CrossRefGoogle Scholar
  53. Kwon, M.J., Beulig, F., Ilie, I., Wildner, M., Küsel, K., Merbold, L., Mahecha, M.D., Zimov, N., Zimov, S.A., Heimann, M., et al. 2017. Plants, microorganisms and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Glob. Chang. Biol. 23, 2396–2412.CrossRefGoogle Scholar
  54. Kwon, M.J., Heimann, M., Kolle, O., Luus, K.A., Schuur, E.A.G., Zimov, N., Zimov, S.A., and Goeckede, M. 2016. Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics. Biogeosci. 13, 4219–4235.CrossRefGoogle Scholar
  55. Larsen, K.S., Grogan, P., Jonasson, S., and Michelsen, A. 2007. Respiration and microbial dynamics in two subarctic ecosystems during winter and spring thaw: effects of increased snow depth. Arct. Antarct. Alp. Res. 39, 268–276.CrossRefGoogle Scholar
  56. Lau, M.C., Stackhouse, B., Layton, A.C., Chauhan, A., Vishnivetskaya, T., Chourey, K., Ronholm, J., Mykytczuk, N., Bennett, P., and Lamarche-Gagnon, G. 2015. An active atmospheric methane sink in high Arctic mineral cryosols. ISME J. 9, 1880–1891.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lauber, C.L., Hamady, M., Knight, R., and Fierer, N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lee, H., Schuur, E.G., Vogel, J.G., Lavoie, M., Bhadra, D., and Staudhammer, C.L. 2011. A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing. Glob. Chang. Biol. 17, 1379–1393.CrossRefGoogle Scholar
  59. Liebner, S., Ganzert, L., Kiss, A., Yang, S., Wagner, D., and Svenning, M.M. 2015. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost. Front. Microbiol. 6, 356.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Liebner, S. and Wagner, D. 2007. Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environ. Microbiol. 9, 107–117.CrossRefPubMedGoogle Scholar
  61. Liljedahl, A.K., Boike, J., Daanen, R.P., Fedorov, A.N., Frost, G.V., Grosse, G., Hinzman, L.D., Iijma, Y., Jorgenson, J.C., Matveyeva, N., et al. 2016. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. GNat. eosci. 9, 312–318.Google Scholar
  62. Lipson, D.A., Haggerty, J.M., Srinivas, A., Raab, T.K., Sathe, S., and Dinsdale, E.A. 2013. Metagenomic insights into anaerobic metabolism along an Arctic peat soil profile. PLoS One 8, e64659.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mackelprang, R., Burkert, A., Haw, M., Mahendrarajah, T., Conaway, C.H., Douglas, T.A., and Waldrop, M.P. 2017. Microbial survival strategies in ancient permafrost: Insights from metagenomics. ISME J. 11, 2305–2318.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Mackelprang, R., Waldrop, M.P., DeAngelis, K.M., David, M.M., Chavarria, K.L., Blazewicz, S.J., Rubin, E.M., and Jansson, J.K. 2011. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371.CrossRefPubMedGoogle Scholar
  65. Martinez-Cruz, K., Leewis, M.C., Herriott, I.C., Sepulveda-Jauregui, A., Anthony, K.W., Thalasso, F., and Leigh, M.B. 2017. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci. Total Environ. 607, 23–31.CrossRefPubMedGoogle Scholar
  66. McCalley, C.K., Woodcroft, B.J., Hodgkins, S.B., Wehr, R.A., Kim, E.H., Mondav, R., Crill, P.M., Chanton, J.P., Rich, V.I., Tyson, G.W., et al. 2014. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514, 478–481.CrossRefPubMedGoogle Scholar
  67. McGuire, A.D., Melillo, J.M., Kicklighter, D.W., Pan, Y., Xiao, X., Helfrich, J., Moore, B., Vorosmarty, C.J., and Schloss, A.L. 1997. Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration. Global Biogeochem. Cycles 11, 173–189.CrossRefGoogle Scholar
  68. Mondav, R., McCalley, C.K., Hodgkins, S.B., Frolking, S., Saleska, S.R., Rich, V.I., Chanton, J.P., and Crill, P.M. 2017. Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient. Environ. Microbiol. 19, 3201–3218.CrossRefPubMedGoogle Scholar
  69. Mondav, R., Woodcroft, B.J., Kim, E.H., McCalley, C.K., Hodgkins, S.B., Crill, P.M., Chanton, J., Hurst, G.B., VerBerkmoes, N.C., and Saleska, S.R. 2014. Discovery of a novel methanogen prevalent in thawing permafrost. Nat. Commun. 5, 3212.CrossRefPubMedGoogle Scholar
  70. Monteux, S., Weedon, J.T., Blume-Werry, G., Gavazov, K., Jassey, V.E.J., Johansson, M., Keuper, F., Olid, C., and Dorrepaal, E. 2018. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. ISME J. 12, 2129–2141.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Moosavi, S.C. and Crill, P.M. 1998. CH4 oxidation by tundra wetlands as measured by a selective inhibitor technique. J. Geophys. Res. Atmos. 103, 29093–29106.CrossRefGoogle Scholar
  72. Müller, O., Bang-Andreasen, T., White, R.A. 3rd, Elberling, B., Tas, N., Kneafsey, T., Jansson, J.K., and Øvreås, L. 2018. Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates. Environ. Microbiol. 20, 4328–4342.CrossRefPubMedGoogle Scholar
  73. Mykytczuk, N.C.S., Foote, S.J., Omelon, C.R., Southam, G., Greer, C.W., and Whyte, L.G. 2013. Bacterial growth at -15°C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7, 1211–1226.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Negandhi, K., Laurion, I., Whiticar, M.J., Galand, P.E., Xu, X., and Lovejoy, C. 2013. Small thaw ponds: an unaccounted source of methane in the Canadian High Arctic. PLoS One 8, e78204.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Nemergut, D.R., Costello, E.K., Meyer, A.F., Pescador, M.Y., Weintraub, M.N., and Schmidt, S.K. 2005. Structure and function of alpine and Arctic soil microbial communities. Res. Microbiol. 156, 775–784.CrossRefPubMedGoogle Scholar
  76. Neufeld, J.D. and Mohn, W.W. 2005. Unexpectedly high bacterial diversity in Arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl. Environ. Microbiol. 71, 5710–5718.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Nobrega, S. and Grogan, P. 2008. Landscape and ecosystem-level controls on net carbon dioxide exchange along a natural moisture gradient in Canadian low Arctic tundra. Ecosystems 11, 377–396.CrossRefGoogle Scholar
  78. Ping, C.L. 2013. Gelisols: Part I. Cryogenesis and state factors of formation. Soil Horiz. 54, 1–5.CrossRefGoogle Scholar
  79. Pinnell, L.J., Dunford, E., Ronan, P., Hausner, M., and Neufeld, J.D. 2014. Recovering glycoside hydrolase genes from active tundra cellulolytic bacteria. Can. J. Microbiol. 60, 469–476.CrossRefPubMedGoogle Scholar
  80. Pizano, C., Baron, A.F., Schuur, E.A.G., Crummer, K.G., and Mack, M.C. 2014. Effects of thermo-erosional disturbance on surface soil carbon and nitrogen dynamics in upland arctic tundra. Environ. Res. Lett. 9, 075006.CrossRefGoogle Scholar
  81. Popp, T.J., Chanton, J.P., Whiting, G.J., and Grant, N. 2000. Evaluation of methane oxidation in therhizosphere of a Carex dominated fen in northcentral Alberta, Canada. Biogeochemistry 51, 259–281.CrossRefGoogle Scholar
  82. Puri, A.W., Schaefer, A.L., Fu, Y., Beck, D.A., Greenberg, E.P., and Lidstrom, M.E. 2017. Quorum sensing in a methane-oxidizing bacterium. J. Bacteriol. 199, e00773–16.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Reay, D., Smith, P., and Van Amstel, A. 2010., Methane sources and the global methane budget, pp. 1–13. In Methane and climate change. Earthscan.Google Scholar
  84. Rime, T., Hartmann, M., Brunner, I., Widmer, F., Zeyer, J., and Frey, B. 2015. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Mol. Ecol. 24, 1091–1108.CrossRefPubMedGoogle Scholar
  85. Rochette, P. and Hutchinson, G.L. 2005. Measurement of soil respiration in situ: chamber techniques, pp. 247–286. In Micrometeorology in agricultural systems. American Society of Agronomy, Madison, USA.Google Scholar
  86. Rowland, J.C., Jones, C.E., Altmann, G., Bryan, R., Crosby, B.T., Hinzman, L.D., Kane, D.L., Lawrence, D.M., Mancino, A., Marsh, P., et al. 2010. Arctic landscapes in transition: Responses to thawing permafrost. EOS 91, 229–230.CrossRefGoogle Scholar
  87. Schädel, C., Bader, M.K.F., Schuur, E.A.G., Biasi, C., Bracho, R., Capek, P., De Baets, S., Diáková, K., Ernakovich, J., Estop-Aragones, C., et al. 2016. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Chang. 6, 950–953.CrossRefGoogle Scholar
  88. Schuur, E.A.G., Bockheim, J., Canadell, J.G., Euskirchen, E., Field, C.B., Goryachkin, S.V., Hagemann, S., Kuhry, P., Lafleur, P.M., Lee, H., et al. 2008. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience 58, 701–714.CrossRefGoogle Scholar
  89. Schuur, E.A.G. and Mack, M.C. 2018. Ecological response to permafrost thaw and consequences for local and global ecosystem services. Annu. Rev. Ecol. Evol. Syst. 49, 279–301.CrossRefGoogle Scholar
  90. Schuur, E.A., McGuire, A.D., Schadel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., et al. 2015. Climate change and the permafrost carbon feedback. Nature 520, 171–179.CrossRefPubMedGoogle Scholar
  91. Segal, A.D. and Sullivan, P.F. 2014. Identifying the sources and uncertainties of ecosystem respiration in Arctic tussock tundra. Biogeochemistry 121, 489–503.CrossRefGoogle Scholar
  92. Shaver, G.R., Giblin, A.E., Nadelhoffer, K.J., Thieler, K.K., Downs, M.R., Laundre, J.A., and Rastetter, E.B. 2006. Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. J. Ecol. 94, 740–753.CrossRefGoogle Scholar
  93. Shcherbakova, V., Yoshimura, Y., Ryzhmanova, Y., Taguchi, Y., Segawa, T., Oshurkova, V., and Rivkina, E. 2016. Archaeal communities of Arctic methane-containing permafrost. FEMS Microbiol. Ecol. 92, fiw135.CrossRefPubMedGoogle Scholar
  94. Shi, Y., Xiang, X., Shen, C., Chu, H., Neufeld, J.D., Walker, V.K., and Grogan, P. 2015. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities. Appl. Environ. Microbiol. 81, 492–501.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Singh, B.K., Bardgett, R.D., Smith, P., and Reay, D.S. 2010. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779.CrossRefPubMedGoogle Scholar
  96. Singleton, C.M., McCalley, C.K., Woodcroft, B.J., Boyd, J.A., Evans, P.N., Hodgkins, S.B., Chanton, J.P., Frolking, S., Crill, P.M., Saleska, S.R., et al. 2018. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Smith, L.C., Sheng, Y., MacDonald, G.M., and Hinzman, L.D. 2005. Disappearing Arctic lakes. Science 308, 1429.CrossRefPubMedGoogle Scholar
  98. Stackhouse, B.T., Vishnivetskaya, T.A., Layton, A., Chauhan, A., Pfiffner, S., Mykytczuk, N.C., Sanders, R., Whyte, L.G., Hedin, L., Saad, N., et al. 2015. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake. J. Geophys. Res. Biogeosci. 120, 1764–1784.CrossRefGoogle Scholar
  99. Steven, B., Pollard, W.H., Greer, C.W., and Whyte, L.G. 2008. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ. Microbiol. 10, 3388–3403.CrossRefPubMedGoogle Scholar
  100. Strauss, J., Schirrmeister, L., Mangelsdorf, K., Eichhorn, L., Wetterich, S., and Herzschuh, U. 2015. Organic-matter quality of deep permafrost carbon - a study from Arctic Siberia. Biogeosciences 12, 2227–2245.CrossRefGoogle Scholar
  101. Suvanto, S., Le Roux, P.C., and Luoto, M. 2014. Arctic-alpine vegetation biomass is driven by fine-scale abiotic heterogeneity. Geogr. Ann. Ser. A Phys. Geogr. 96, 549–560.Google Scholar
  102. Tas, N., Prestat, E., McFarland, J.W., Wickland, K.P., Knight, R., Berhe, A.A., Jorgenson, T., Waldrop, M.P., and Jansson, J.K. 2014. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. 8, 1904–1919.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Tas, N., Prestat, E., Wang, S., Wu, Y., Ulrich, C., Kneafsey, T., Tringe, S.G., Torn, M.S., Hubbard, S.S., and Jansson, J.K. 2018. Landscape topography structures the soil microbiome in arctic polygonal tundra. Nat. Commun. 9, 777.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Timling, I., Walker, D.A., Nusbaum, C., Lennon, N.J., and Taylor, D.L. 2014. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Mol. Ecol. 23, 3258–3272.CrossRefPubMedGoogle Scholar
  105. Treat, C.C., Wollheim, W.M., Varner, R.K., Grandy, A.S., Talbot, J., and Frolking, S. 2014. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Glob. Chang. Biol. 20, 2674–2686.CrossRefPubMedGoogle Scholar
  106. Tripathi, B.M., Kim, M., Kim, Y., Byun, E., Yang, J.W., Ahn, J., and Lee, Y.K. 2018. Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores. Sci. Rep. 8, 504.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Tripathi, B.M., Kim, M., Lai-Hoe, A., Shukor, N.A.A., Rahim, R.A., Go, R., and Adams, J.M. 2013. pH dominates variation in tropical soil archaeal diversity and community structure. FEMS Microbiol. Ecol. 86, 303–311.CrossRefPubMedGoogle Scholar
  108. Tuorto, S.J., Darias, P., McGuinness, L.R., Panikov, N., Zhang, T., Häggblom, M.M., and Kerkhof, L.J. 2014. Bacterial genome replication at subzero temperatures in permafrost. ISME J. 8, 139.CrossRefPubMedGoogle Scholar
  109. Tveit, A., Schwacke, R., Svenning, M.M., and Urich, T. 2013. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 7, 299–311.CrossRefPubMedGoogle Scholar
  110. Tveit, A.T., Urich, T., Frenzel, P., and Svenning, M.M. 2015. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc. Nat. Acad. Sci. USA 112, E2507–E2516.CrossRefPubMedGoogle Scholar
  111. Vaughn, L.J.S., Conrad, M.E., Bill, M., and Torn, M.S. 2016. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra. Glob. Chang. Biol. 22, 3487–3502.CrossRefPubMedGoogle Scholar
  112. Verastegui, Y., Cheng, J., Engel, K., Kolczynski, D., Mortimer, S., Lavigne, J., Montalibet, J., Romantsov, T., Hall, M., McConkey, B.J., et al. 2014. Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities. MBio 5, e01157–14.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Vishnivetskaya, T., Kathariou, S., McGrath, J., Gilichinsky, D., and Tiedje, J.M. 2000. Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4, 165–173.CrossRefPubMedGoogle Scholar
  114. Wagner, D., Lipski, A., Embacher, A., and Gattinger, A. 2005. Methane fluxes in permafrost habitats of the Lena Delta: effects of microbila community structure and organci matter quality. Environ. Microbiol. 7, 1582–1592.CrossRefPubMedGoogle Scholar
  115. Walker, D.A., Everett, K.R., Webber, P.J., and Brown, J. 1980. Geobotanical atlas of the prudhoe bay region, Alaska. US Army Corps of Engineers.Google Scholar
  116. Wallenstein, M.D., McMahon, S., and Schimel, J. 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol. Ecol. 59, 428–435.CrossRefPubMedGoogle Scholar
  117. Walvoord, M.A. and Kurylyk, B.L. 2016. Hydrologic impacts of thawing permafrost–A review. Vadose Zone J. 15, vzj2016.01.0010.CrossRefGoogle Scholar
  118. Wang, H., Shirong, L., Xiao, Z., Qinggong, M., Xiangzhen, L., Yeming, Y., Jingxin, W., Mianhai, Z., Wei, Z., Xiankai, L., et al. 2018. Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China. Soil Biol. Biochem. 127, 22–30.CrossRefGoogle Scholar
  119. Woodcroft, B.J., Singleton, C.M., Boyd, J.A., Evans, P.N., Emerson, J.B., Zayed, A.A., Hoelzle, R.D., Lamberton, T.O., McCalley, C.K., and Hodgkins, S.B. 2018. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49.CrossRefPubMedGoogle Scholar
  120. Wrona, F.J., Johansson, M., Culp, J.M., Jenkins, A., Mård, J., Myers-Smith, I.H., Prowse, T.D., Vincent, W.F., and Wookey, P.A. 2016. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime. J. Geophys. Res. Biogeosci. 121, 650–674.CrossRefGoogle Scholar
  121. Ye, R., Jin, Q., Bohannan, B., Keller, J.K., McAllister, S.A., and Bridgham, S.D. 2012. pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic–minerotrophic gradient. Soil Biol. Biochem. 54, 36–47.CrossRefGoogle Scholar
  122. Yergeau, E., Hogues, H., Whyte, L.G., and Greer, C.W. 2010. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J. 4, 1206–1214.CrossRefPubMedGoogle Scholar
  123. Yoshikawa, K. and Hinzman, L.D. 2003. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska. Permafrost Periglac. 14, 151–160.CrossRefGoogle Scholar
  124. Zak, D.R. and Kling, G.W. 2006. Microbial community composition and function across an Arctic tundra landscape. Ecology 87, 1659–1670.CrossRefPubMedGoogle Scholar
  125. Zhang, C., Stapleton, R.D., Zhou, J., Palumbo, A.V., and Phelps, T.J. 1999. Iron reduction by psychrotrophic enrichment cultures. FEMS Microbiol. Ecol. 30, 367–371.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Min Jung Kwon
    • 1
  • Ji Young Jung
    • 1
  • Binu M. Tripathi
    • 1
  • Mathias Göckede
    • 2
  • Yoo Kyung Lee
    • 1
  • Mincheol Kim
    • 1
    Email author
  1. 1.Korea Polar Research InstituteIncheonRepublic of Korea
  2. 2.Max Planck Institute for BiogeochemistryJenaGermany

Personalised recommendations