Journal of Microbiology

, Volume 57, Issue 2, pp 138–142 | Cite as

Oxygen-mediated growth enhancement of an obligate anaerobic archaeon Thermococcus onnurineus NA1

  • Seong Hyuk Lee
  • Hwan Youn
  • Sung Gyun KangEmail author
  • Hyun Sook LeeEmail author
Microbial Physiology and Biochemistry


Thermococcus onnurineus NA1, an obligate anaerobic hyperthermophilic archaeon, showed variable oxygen (O2) sensitivity depending on the types of substrate employed as an energy source. Unexpectedly, the culture with yeast extract as a sole energy source showed enhanced growth by 2-fold in the presence of O2. Genome-wide transcriptome analysis revealed the upregulation of several antioxidant-related genes encoding thioredoxin peroxidase (TON_0862), rubrerythrin (TON_0864), rubrerythrin-related protein (TON_0873), NAD(P)H rubredoxin oxidoreductase (TON_0865), or thioredoxin reductase (TON_1603), which can couple the detoxification of reactive oxygen species with the regeneration of NAD(P)+ from NAD(P)H. We present a plausible mechanism by which O2 serves to maintain the intracellular redox balance. This study demonstrates an unusual strategy of an obligate anaerobe underlying O2-mediated growth enhancement despite not having heme-based or cytochrome-type proteins.


oxygen obligate anaerobic archaeon Thermococcus onnurineus NA1 transcriptome analysis antioxidant enzymes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8592_MOESM1_ESM.xlsx (54 kb)
Supplementary data Table S1. COG functional classification of downregulated genes by 20% O2
12275_2019_8592_MOESM2_ESM.xlsx (39 kb)
Supplementary data Table S2. COG functional classification of upregulated genes by 20% O2


  1. Adams, M.W.W. 1998. The biochemical diversity of life near and above 100°C in marine environments. J. Appl. Microbiol. 85, 108S–117S.CrossRefGoogle Scholar
  2. Andreasen, A.A. and Stier, T.J. 1954. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J. Cell. Comp. Physiol. 43, 271–281.CrossRefGoogle Scholar
  3. Bae, S.S., Kim, Y.J., Yang, S.H., Lim, J.K., Jeon, J.H., Lee, H.S., Kang, S.G., Kim, S.J., and Lee, J.H. 2006. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 16, 1826–1831.Google Scholar
  4. Baughn, A.D. and Malamy, M.H. 2004. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427, 441–444.CrossRefGoogle Scholar
  5. Cabiscol, E., Tamarit, J., and Ros, J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 3, 3–8.Google Scholar
  6. Cao, B., Nagarajan, K., and Loh, K.C. 2009. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl. Microbiol. Biotechnol. 85, 207–228.CrossRefGoogle Scholar
  7. Case, C.L., Rodriguez, J.R., and Mukhopadhyay, B. 2009. Characterization of an NADH oxidase of the flavin-dependent disulfide reductase family from Methanocaldococcus jannaschii. Microbiology 155, 69–79.CrossRefGoogle Scholar
  8. Hogg, S. 2005. Essential microbiology. John Wiley and Sons Ltd, Chichester, West Sussex, UK.Google Scholar
  9. Imlay, J.A. 2002. How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv. Microb. Physiol. 46, 111–153.CrossRefGoogle Scholar
  10. Imlay, J.A. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77, 755–776.CrossRefGoogle Scholar
  11. Jenney, F.E., Verhagen, M.F., Cui, X., and Adams, M.W. 1999. Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286, 306–309.CrossRefGoogle Scholar
  12. Kawasaki, S., Ishikura, J., Chiba, D., Nishino, T., and Niimura, Y. 2004. Purification and characterization of an H2O-forming NADH oxidase from Clostridium aminovalericum: existence of an oxygen-detoxifying enzyme in an obligate anaerobic bacteria. Arch. Microbiol. 181, 324–330.CrossRefGoogle Scholar
  13. Kim, M.S., Bae, S.S., Kim, Y.J., Kim, T.W., Lim, J.K., Lee, S.H., Choi, A.R., Jeon, J.H., Lee, J.H., Lee, H.S., et al. 2013. CO-dependent H2 production by genetically engineered Thermococcus onnurineus NA1. Appl. Environ. Microbiol. 79, 2048–2053.CrossRefGoogle Scholar
  14. Kim, Y.J., Lee, H.S., Kim, E.S., Bae, S.S., Lim, J.K., Matsumi, R., Lebedinsky, A.V., Sokolova, T.G., Kozhevnikova, D.A., Cha, S.S., et al. 2010. Formate-driven growth coupled with H2 production. Nature 467, 352–355.CrossRefGoogle Scholar
  15. Lee, H.S., Kang, S.G., Bae, S.S., Lim, J.K., Cho, Y., Kim, Y.J., Jeon, J.H., Cha, S.S., Kwon, K.K., Kim, H.T., et al. 2008. The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J. Bacteriol. 190, 7491–7499.CrossRefGoogle Scholar
  16. Lumppio, H.L., Shenvi, N.V., Summers, A.O., Voordouw, G., and Kurtz, D.M. 2001. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J. Bacteriol. 183, 101–108.CrossRefGoogle Scholar
  17. Madigan, M., Martinko, J., Stahl, D., and Clark, D. 2010. Microbial Growth, pp. 117–149. In Cummings, B. (ed.), Brock biology of microorganisms, 13th ed. Person education, San Francisco, USA.Google Scholar
  18. Moon, Y.J., Kwon, J., Yun, S.H., Lim, H., Kim, J., Kim, S., Kang, S., Lee, J.H., Kim, S., and Chung, Y.H. 2015. Proteomic insights into sulfur metabolism in the hydrogen-producing hyperthermophilic archaeon Thermococcus onnurineus NA1. Int. J. Mol. Sci. 16, 9167–9195.CrossRefGoogle Scholar
  19. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628.CrossRefGoogle Scholar
  20. Rojo, F. 2009. Degradation of alkanes by bacteria. Environ. Microbiol. 11, 2477–2490.CrossRefGoogle Scholar
  21. Staerck, C., Gastebois, A., Vandeputte, P., Calenda, A., Larcher, G., Gillmann, L., Papon, N., Bouchara, J.P., and Fleury, M.J.J. 2017. Microbial antioxidant defense enzymes. Microb. Pathog. 110, 56–65.CrossRefGoogle Scholar
  22. Storz, G. and Imlay, J.A. 1999. Oxidative stress. Curr. Opin. Microbiol. 2, 188–194.CrossRefGoogle Scholar
  23. Strand, K.R., Sun, C., Li, T., Jenney, F.E., Schut, G.J., and Adams, M.W.W. 2010. Oxidative stress protection and the repair response to hydrogen peroxide in the hyperthermophilic archaeon Pyrococcus furiosus and in related species. Arch. Microbiol. 192, 447–459.CrossRefGoogle Scholar
  24. Thorgersen, M.P., Stirrett, K., Scott, R.A., and Adams, M.W.W. 2012. Mechanism of oxygen detoxification by the surprisingly oxygen-tolerant hyperthermophilic archaeon, Pyrococcus furiosus. Proc. Natl. Acad. Sci. USA 109, 18547–18552.CrossRefGoogle Scholar
  25. Ward, D.E., Donnelly, C.J., Mullendore, M.E., van der Oost, J., de Vos, W.M., and Crane, E.J. 2001. The NADH oxidase from Pyrococcus furiosus. Implications for the protection of anaerobic hyperthermophiles against oxidative stress. Eur. J. Biochem. 268, 5816–5823.CrossRefGoogle Scholar
  26. Wolf, Y.I., Makarova, K.S., Yutin, N., and Koonin, E.V. 2012. Updated clusters of orthologous genes for archaea: a complex ancestor of the archaea and the byways of horizontal gene transfer. Biol. Direct 7, 46.CrossRefGoogle Scholar
  27. Woods, D.R. and Jones, D.T. 1986. Physiological responses of Bacteroides and Clostridium strains to environmental stress factors. Adv. Microb. Physiol. 28, 1–64.Google Scholar
  28. Yang, X. and Ma, K. 2005. Purification and characterization of an NADH oxidase from extremely thermophilic anaerobic bacterium Thermotoga hypogea. Arch. Microbiol. 183, 331–337.CrossRefGoogle Scholar
  29. Yang, X. and Ma, K. 2007. Characterization of an exceedingly active NADH oxidase from the anaerobic hyperthermophilicbacterium Thermotoga maritima. J. Bacteriol. 189, 3312–3317.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Korea Institute of Ocean Science and TechnologyBusanRepublic of Korea
  2. 2.Department of BiologyCalifornia State UniversityFresnoUSA
  3. 3.Department of Marine BiotechnologyKorea University of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations