Advertisement

Journal of Microbiology

, Volume 57, Issue 4, pp 238–242 | Cite as

Mesorhizobium denitrificans sp. nov., a novel denitrifying bacterium isolated from sludge

  • Muhammad Zubair Siddiqi
  • Ngo Thi Phuong Thao
  • Gyumin Choi
  • Dae-Cheol Kim
  • Young-Woo Lee
  • Sang Young Kim
  • Ji-Hyang Wee
  • Wan-Taek ImEmail author
Microbial Systematics and Evolutionary Microbiology
  • 15 Downloads

Abstract

A Gram-stain-negative, non-spore-forming, facultative, rod-shaped bacterium (designated LA-28T) was isolated from a sludge sample from a wastewater treatment plant in Hanam city, Republic of Korea. On the basis of 16S rRNA gene sequencing, strain LA-28T clustered with species of the genus Mesorhizobium and appeared closely related to M. jarvisii LMG 28313T (96.8%), M. waimense ICMP 19557T (96.7%), and M. huakuii LMG 14107T (96.7%). Growth occurs at 18–40°C on R2A medium in the presence of 1–4% NaCl (w/v) and at pH 6–8. The DNA G+C content was 61.2 mol%, and the predominant quinone was ubiquinone-10 (Q-10). The major cellular fatty acids (> 5%) were C16:0, C19:0ω8c cyclo, C18:1ω7c 11-methyl, and C18:1ω7c and/or C18:1ω6c (summed feature 8). Major polar lipids were phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidyl-N-methylethanolamine (PME), and phosphatidylcholine (PC). Physiological and biochemical characteristics indicated that strain LA-28T represents a novel species of the genus Mesorhizobium, for which the name Mesorhizobium denitrificans sp. nov. is proposed. The type strain is LA-28T (= KACC 19675T = LMG 30806T).

Keywords

Mesorhizobium denitrificans 16S rRNA gene sequence polyphasic taxomony sludge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8590_MOESM1_ESM.pdf (84 kb)
Supplementary material, approximately 83.6 KB.

References

  1. Atlas, R.M. 1993. Handbook of microbiological media. CRC Press, Boca Raton, Florida, USA.Google Scholar
  2. Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.Google Scholar
  3. Cappuccino, J.G. and Sherman, N. 2002. Microbiology. a laboratory manual, 6th ed. Pearson Education, Inc., California, USA.Google Scholar
  4. Chen, W.X., Li, G.S., Qi, Y.L., Wang, E.T., Yuan, H.L., and Li, J.L. 1991. Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int. J. Syst. Bacteriol. 41, 275–280.CrossRefGoogle Scholar
  5. De Meyer, S.E., Tan, H.W., Andrews, M., Heenan, P.B., and Willems, A. 2016. Mesorhizobium calcicola sp. nov., Mesorhizobium waitakense sp. nov., Mesorhizobium sophorae sp. nov., Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from Sophora root nodules. Int. J. Syst. Evol. Microbiol. 66, 786–795.CrossRefGoogle Scholar
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791.CrossRefGoogle Scholar
  7. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  8. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.Google Scholar
  9. Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.CrossRefGoogle Scholar
  10. Jarvis, B.D.W., Van Berkum, P., Chen, W.X., Nour, S.M., Fernandez, M.P., Cleyet-Marel, J.C., and Gillis, M. 1997. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int. J. Syst. Bacteriol. 47, 895–898.CrossRefGoogle Scholar
  11. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  12. Lane, D.J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics. Wiley, New York, USA.Google Scholar
  13. Martinez-Hidalgo, P., Ramirez-Bahena, M.H., Flores-Felix, J.D., Igual, J.M., Sanjuan, J., Leon-Barrios, M., Peix, A., and Velazquez, E. 2016. Reclassification of strains MAFF 303099T and R7A into Mesorhizobium japonicum sp. nov. Int. J. Syst. Evol. Microbiol. 66, 4936–4941.CrossRefGoogle Scholar
  14. Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.CrossRefGoogle Scholar
  15. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  16. Moore, D.D. and Dowhan, D. 1995. Preparation and analysis of DNA, pp. 2–11. In Ausubel, F.W., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.), Current protocols in molecular biology, Wiley, New York, USA.Google Scholar
  17. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.Google Scholar
  18. Sasser, M. 1990. Identification of bacteria through fatty acid analysis, pp. 199–204. In Klement, Z., Rudolph, K., and Sands, D.C. (eds.), Methods in phytobacteriology, Akademiai Kaido, Budapest, Hungary.Google Scholar
  19. Siddiqi, M.Z., Shah, S., Choi, K.D., Kim, S.Y., and Im, W.T. 2018. Mesorhizobium hankyongi sp. nov. isolated from soil of ginseng cultivating field. Curr. Microbiol. 75, 1453–1459.CrossRefGoogle Scholar
  20. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.CrossRefGoogle Scholar
  21. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins., D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefGoogle Scholar
  22. Velázquez, E., Igual, J.M., Willems, A., Fernández, M.P., Muñoz, E., Mateos, P.F., Abril, A., Toro, N., Normand, P., Cervantes, E., et al. 2001. Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int. J. Syst. Evol. Microbiol. 51, 1011–1021.CrossRefGoogle Scholar
  23. Yuan, C.G., Jiang, Z., Xiao, M., Zhou, E.M., Kim, C.J., Hozzein, W.N., Park, D.J., Zhi, X.Y., and Li, W.J. 2016. Mesorhizobium sediminum sp. nov., isolated from deep-sea sediment. Int. J. Syst. Evol. Microbiol. 66, 4797–4802.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  • Muhammad Zubair Siddiqi
    • 1
    • 2
  • Ngo Thi Phuong Thao
    • 3
  • Gyumin Choi
    • 2
  • Dae-Cheol Kim
    • 1
  • Young-Woo Lee
    • 1
  • Sang Young Kim
    • 4
  • Ji-Hyang Wee
    • 4
  • Wan-Taek Im
    • 1
    • 2
    Email author
  1. 1.Department of BiotechnologyHankyong National UniversityAnseongRepublic of Korea
  2. 2.AceEMzyme Co., Ltd., Academic Industry CooperationAnseongRepublic of Korea
  3. 3.M-ChET, KIOCA programHankyong National UniversityAnseongRepublic of Korea
  4. 4.Department of Food Science & Bio TechnologyShinansan UniversityAnsanRepublic of Korea

Personalised recommendations