Journal of Microbiology

, Volume 57, Issue 2, pp 81–92 | Cite as

Alanine dehydrogenases in mycobacteria

  • Ji-A Jeong
  • Jeong-Il OhEmail author


Since NAD(H)-dependent L-alanine dehydrogenase (EC; Ald) was identified as one of the major antigens present in culture filtrates of Mycobacterium tuberculosis, many studies on the enzyme have been conducted. Ald catalyzes the reversible conversion of pyruvate to alanine with concomitant oxidation of NADH to NAD+ and has a homohexameric quaternary structure. Expression of the ald genes was observed to be strongly upregulated in M. tuberculosis and Mycobacterium smegmatis grown in the presence of alanine. Furthermore, expression of the ald genes in some mycobacteria was observed to increase under respiration-inhibitory conditions such as oxygen-limiting and nutrient-starvation conditions. Upregulation of ald expression by alanine or under respiration-inhibitory conditions is mediated by AldR, a member of the Lrp/AsnC family of transcriptional regulators. Mycobacterial Alds were demonstrated to be the enzymes required for utilization of alanine as a nitrogen source and to help mycobacteria survive under respiration-inhibitory conditions by maintaining cellular NADH/NAD+ homeostasis. Several inhibitors of Ald have been developed, and their application in combination with respiration-inhibitory antitubercular drugs such as Q203 and bedaquiline was recently suggested.


alanine dehydrogenase gene regulation Lrp/AsnC family regulator mycobacteria redox homeostasis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agren, D., Stehr, M., Berthold, C.L., Kapoor, S., Oehlmann, W., Singh, M., and Schneider, G. 2008. Three-dimensional structures of apo- and holo-L-alanine dehydrogenase from Mycobacterium tuberculosis reveal conformational changes upon coenzyme binding. J. Mol. Biol. 377, 1161–1173.CrossRefGoogle Scholar
  2. Andersen, A.B., Andersen, P., and Ljungqvist, L. 1992. Structure and function of a 40,000-molecular-weight protein antigen of Mycobacterium tuberculosis. Infect. Immun. 60, 2317–2323.Google Scholar
  3. Berney, M. and Cook, G.M. 2010. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS One 5, e8614.CrossRefGoogle Scholar
  4. Berney, M., Greening, C., Conrad, R., Jacobs, W.R. Jr., and Cook, G.M. 2014. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc. Natl. Acad. Sci. USA 111, 11479–11484.CrossRefGoogle Scholar
  5. Betts, J.C., Lukey, P.T., Robb, L.C., McAdam, R.A., and Duncan, K. 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43, 717–731.CrossRefGoogle Scholar
  6. Bhat, S.A., Iqbal, I.K., and Kumar, A. 2016. Imaging the NADH: NAD+ homeostasis for understanding the metabolic response of Mycobacterium to physiologically relevant stresses. Front. Cell. Infect. Microbiol. 6, 145.CrossRefGoogle Scholar
  7. Boshoff, H.I. and Barry, C.E. 3rd. 2005. Tuberculosis - metabolism and respiration in the absence of growth. Nat. Rev. Microbiol. 3, 70–80.CrossRefGoogle Scholar
  8. Boshoff, H.I., Myers, T.G., Copp, B.R., McNeil, M.R., Wilson, M.A., and Barry, C.E. 3rd. 2004. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: Novel insights into drug mechanisms of action. J. Biol. Chem. 279, 40174–40184.CrossRefGoogle Scholar
  9. Chan, K., Knaak, T., Satkamp, L., Humbert, O., Falkow, S., and Ramakrishnan, L. 2002. Complex pattern of Mycobacterium marinum gene expression during long-term granulomatous infection. Proc. Natl. Acad. Sci. USA 99, 3920–3925.CrossRefGoogle Scholar
  10. Chen, J.M., Alexander, D.C., Behr, M.A., and Liu, J. 2003. Mycobacterium bovis BCG vaccines exhibit defects in alanine and serine catabolism. Infect. Immun. 71, 708–716.CrossRefGoogle Scholar
  11. Chen, S. and Calvo, J.M. 2002. Leucine-induced dissociation of Escherichia coli Lrp hexadecamers to octamers. J. Mol. Biol. 318, 1031–1042.CrossRefGoogle Scholar
  12. Chen, S., Rosner, M.H., and Calvo, J.M. 2001. Leucine-regulated selfassociation of leucine-responsive regulatory protein (Lrp) from Escherichia coli. J. Mol. Biol. 312, 625–635.CrossRefGoogle Scholar
  13. Cui, Y., Wang, Q., Stormo, G.D., and Calvo, J.M. 1995. A consensus sequence for binding of Lrp to DNA. J. Bacteriol. 177, 4872–4880.CrossRefGoogle Scholar
  14. de los Rios, S. and Perona, J.J. 2007. Structure of the Escherichia coli leucine-responsive regulatory protein Lrp reveals a novel octameric assembly. J. Mol. Biol. 366, 1589–1602.CrossRefGoogle Scholar
  15. Delforge, D., Devreese, B., Dieu, M., Delaive, E., Van Beeumen, J., and Remacle, J. 1997. Identification of lysine 74 in the pyruvate binding site of alanine dehydrogenase from Bacillus subtilis. Chemical modification with 2,4,6-trinitrobenzenesulfonic acid, nsuccinimidyl 3-(2-pyridyldithio)propionate, and 5'-(p-(fluorosulfonyl) benzoyl)adenosine. J. Biol. Chem. 272, 2276–2284.CrossRefGoogle Scholar
  16. Desjardins, C.A., Cohen, K.A., Munsamy, V., Abeel, T., Maharaj, K., Walker, B.J., Shea, T.P., Almeida, D.V., Manson, A.L., Salazar, A., et al. 2016. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance. Nat. Genet. 48, 544–551.CrossRefGoogle Scholar
  17. Dey, A., Shree, S., Pandey, S.K., Tripathi, R.P., and Ramachandran, R. 2016. Crystal structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a regulator of the ald gene: DNA binding and identification of small molecule inhibitors. J. Biol. Chem. 291, 11967–11980.CrossRefGoogle Scholar
  18. Dick, T., Lee, B.H., and Murugasu-Oei, B. 1998. Oxygen depletion induced dormancy in Mycobacterium smegmatis. FEMS Microbiol. Lett. 163, 159–164.CrossRefGoogle Scholar
  19. Eoh, H. and Rhee, K.Y. 2013. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 110, 6554–6559.CrossRefGoogle Scholar
  20. Ettema, T.J., Brinkman, A.B., Tani, T.H., Rafferty, J.B., and Van Der Oost, J. 2002. A novel ligand-binding domain involved in regulation of amino acid metabolism in prokaryotes. J. Biol. Chem. 277, 37464–37468.CrossRefGoogle Scholar
  21. Feng, Z., Caceres, N.E., Sarath, G., and Barletta, R.G. 2002. Mycobacterium smegmatis L-alanine dehydrogenase (Ald) is required for proficient utilization of alanine as a sole nitrogen source and sustained anaerobic growth. J. Bacteriol. 184, 5001–5010.CrossRefGoogle Scholar
  22. Ferrario, M., Ernsting, B.R., Borst, D.W., Wiese, D.E. 2nd, Blumenthal, R.M., and Matthews, R.G. 1995. The leucine-responsive regulatory protein of Escherichia coli negatively regulates transcription of ompC and micF and positively regulates translation of ompF. J. Bacteriol. 177, 103–113.CrossRefGoogle Scholar
  23. Garnier, T., Eiglmeier, K., Camus, J.C., Medina, N., Mansoor, H., Pryor, M., Duthoy, S., Grondin, S., Lacroix, C., Monsempe, C., et al. 2003. The complete genome sequence of Mycobacterium bovis. Proc. Natl. Acad. Sci. USA 100, 7877–7882.CrossRefGoogle Scholar
  24. Giffin, M.M., Modesti, L., Raab, R.W., Wayne, L.G., and Sohaskey, C.D. 2012. ald of Mycobacterium tuberculosis encodes both the alanine dehydrogenase and the putative glycine dehydrogenase. J. Bacteriol. 194, 1045–1054.CrossRefGoogle Scholar
  25. Giffin, M.M., Shi, L., Gennaro, M.L., and Sohaskey, C.D. 2016. Role of alanine dehydrogenase of Mycobacterium tuberculosis during recovery from hypoxic nonreplicating persistence. PLoS One 11, e0155522.CrossRefGoogle Scholar
  26. Goldman, D.S. 1959. Enzyme systems in the mycobacteria. VII. Purification, properties and mechanism of action of the alanine dehydrogenase. Biochim. Biophys. Acta 34, 527–539.Google Scholar
  27. Goldman, D.S. and Wagner, M.J. 1962. Enzyme systems in the mycobacteria. XIII. Glycine dehydrogenase and the glyoxylic acid cycle. Biochim. Biophys. Acta 65, 297–306.CrossRefGoogle Scholar
  28. Graveline, R., Garneau, P., Martin, C., Mourez, M., Hancock, M.A., Lavoie, R., and Harel, J. 2014. Leucine-responsive regulatory protein Lrp and PapI homologues influence phase variation of CS31A fimbriae. J. Bacteriol. 196, 2944–2953.CrossRefGoogle Scholar
  29. Grimshaw, C.E. and Cleland, W.W. 1981. Kinetic mechanism of Bacillus subtilis L-alanine dehydrogenase. Biochemistry 20, 5650–5655.CrossRefGoogle Scholar
  30. Grimshaw, C.E., Cook, P.F., and Cleland, W.W. 1981. Use of isotope effects and pH studies to determine the chemical mechanism of Bacillus subtilis L-alanine dehydrogenase. Biochemistry 20, 5655–5661.CrossRefGoogle Scholar
  31. Gupta, R.S., Lo, B., and Son, J. 2018. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front. Microbiol. 9, 67.CrossRefGoogle Scholar
  32. Hards, K., Robson, J.R., Berney, M., Shaw, L., Bald, D., Koul, A., Andries, K., and Cook, G.M. 2015. Bactericidal mode of action of bedaquiline. J. Antimicrob. Chemother. 70, 2028–2037.Google Scholar
  33. Hart, B.R. and Blumenthal, R.M. 2011. Unexpected coregulator range for the global regulator Lrp of Escherichia coli and Proteus mirabilis. J. Bacteriol. 193, 1054–1064.CrossRefGoogle Scholar
  34. Hutter, B. and Dick, T. 1998. Increased alanine dehydrogenase activity during dormancy in Mycobacterium smegmatis. FEMS Microbiol. Lett. 167, 7–11.CrossRefGoogle Scholar
  35. Hutter, B. and Singh, M. 1999. Properties of the 40 kDa antigen of Mycobacterium tuberculosis, a functional L-alanine dehydrogenase. Biochem. J. 343 Pt 3, 669–672.CrossRefGoogle Scholar
  36. Jeong, J.A., Baek, E.Y., Kim, S.W., Choi, J.S., and Oh, J.I. 2013. Regulation of the ald gene encoding alanine dehydrogenase by AldR in Mycobacterium smegmatis. J. Bacteriol. 195, 3610–3620.CrossRefGoogle Scholar
  37. Jeong, J.A., Hyun, J., and Oh, J.I. 2015. Regulation mechanism of the ald gene encoding alanine dehydrogenase in Mycobacterium smegmatis and Mycobacterium tuberculosis by the Lrp/AsnC family regulator AldR. J. Bacteriol. 197, 3142–3153.CrossRefGoogle Scholar
  38. Jeong, J.A., Park, S.W., Yoon, D., Kim, S., Kang, H.Y., and Oh, J.I. 2018. Roles of alanine dehydrogenase and induction of its gene in Mycobacterium smegmatis under respiration-inhibitory conditions. J. Bacteriol. 200, e00152–18.CrossRefGoogle Scholar
  39. Jungblut, P.R., Schaible, U.E., Mollenkopf, H.J., Zimny-Arndt, U., Raupach, B., Mattow, J., Halada, P., Lamer, S., Hagens, K., and Kaufmann, S.H. 1999. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol. Microbiol. 33, 1103–1117.CrossRefGoogle Scholar
  40. Kana, B.D., Weinstein, E.A., Avarbock, D., Dawes, S.S., Rubin, H., and Mizrahi, V. 2001. Characterization of the cydAB-encoded cytochrome bd oxidase from Mycobacterium smegmatis. J. Bacteriol. 183, 7076–7086.CrossRefGoogle Scholar
  41. Keuntje, B., Masepohl, B., and Klipp, W. 1995. Expression of the putA gene encoding proline dehydrogenase from Rhodobacter capsulatus is independent of NtrC regulation but requires an Lrp-like activator protein. J. Bacteriol. 177, 6432–6439.CrossRefGoogle Scholar
  42. Koike, H., Ishijima, S.A., Clowney, L., and Suzuki, M. 2004. The archaeal feast/famine regulatory protein: potential roles of its assembly forms for regulating transcription. Proc. Natl. Acad. Sci. USA 101, 2840–2845.CrossRefGoogle Scholar
  43. Koul, A., Vranckx, L., Dhar, N., Gohlmann, H.W., Ozdemir, E., Neefs, J.M., Schulz, M., Lu, P., Mortz, E., McKinney, J.D., et al. 2014. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat. Commun. 5, 3369.CrossRefGoogle Scholar
  44. Kumarevel, T., Nakano, N., Ponnuraj, K., Gopinath, S.C., Sakamoto, K., Shinkai, A., Kumar, P.K., and Yokoyama, S. 2008. Crystal structure of glutamine receptor protein from Sulfolobus tokodaii strain 7 in complex with its effector L-glutamine: Implications of effector binding in molecular association and DNA binding. Nucleic Acids Res. 36, 4808–4820.CrossRefGoogle Scholar
  45. Lambert, M.P. and Neuhaus, F.C. 1972. Mechanism of D-cycloserine action: alanine racemase from Escherichia coli W. J. Bacteriol. 110, 978–987.Google Scholar
  46. Leonard, P.M., Smits, S.H., Sedelnikova, S.E., Brinkman, A.B., de Vos, W.M., van der Oost, J., Rice, D.W., and Rafferty, J.B. 2001. Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus. EMBO J. 20, 990–997.CrossRefGoogle Scholar
  47. Ling, B., Sun, M., Bi, S., Jing, Z., and Liu, Y. 2012. Molecular dynamics simulations of the coenzyme induced conformational changes of Mycobacterium tuberculosis L-alanine dehydrogenase. J. Mol. Graph. Model. 35, 1–10.CrossRefGoogle Scholar
  48. Ljungqvist, L., Worsaae, A., and Heron, I. 1988. Antibody responses against Mycobacterium tuberculosis in 11 strains of inbred mice: novel monoclonal antibody specificities generated by fusions, using spleens from BALB.B10 and CBA/J mice. Infect. Immun. 56, 1994–1998.Google Scholar
  49. Marasco, R., Varcamonti, M., La Cara, F., Ricca, E., De Felice, M., and Sacco, M. 1994. In vivo footprinting analysis of Lrp binding to the ilvIH promoter region of Escherichia coli. J. Bacteriol. 176, 5197–5201.CrossRefGoogle Scholar
  50. Matsoso, L.G., Kana, B.D., Crellin, P.K., Lea-Smith, D.J., Pelosi, A., Powell, D., Dawes, S.S., Rubin, H., Coppel, R.L., and Mizrahi, V. 2005. Function of the cytochrome bc 1-aa 3 branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption. J. Bacteriol. 187, 6300–6308.CrossRefGoogle Scholar
  51. Mayuri, Bagchi, G., Das, T.K., and Tyagi, J.S. 2002. Molecular analysis of the dormancy response in Mycobacterium smegmatis: expression analysis of genes encoding the DevR-DevS two-component system, Rv3134c and chaperone alpha-crystallin homologues. FEMS Microbiol. Lett. 211, 231–237.Google Scholar
  52. Moraski, G.C., Markley, L.D., Hipskind, P.A., Boshoff, H., Cho, S., Franzblau, S.G., and Miller, M.J. 2011. Advent of imidazo[1,2-a] pyridine-3-carboxamides with potent multi- and extended drug resistant antituberculosis activity. ACS Med. Chem. Lett. 2, 466–470.CrossRefGoogle Scholar
  53. Nou, X., Braaten, B., Kaltenbach, L., and Low, D.A. 1995. Differential binding of Lrp to two sets of pap DNA binding sites mediated by PapI regulates Pap phase variation in Escherichia coli. EMBO J. 14, 5785–5797.CrossRefGoogle Scholar
  54. Nou, X., Skinner, B., Braaten, B., Blyn, L., Hirsch, D., and Low, D. 1993. Regulation of pyelonephritis-associated pili phase-variation in Escherichia coli: binding of the PapI and the Lrp regulatory proteins is controlled by DNA methylation. Mol. Microbiol. 7, 545–553.CrossRefGoogle Scholar
  55. Okamura, H., Yokoyama, K., Koike, H., Yamada, M., Shimowasa, A., Kabasawa, M., Kawashima, T., and Suzuki, M. 2007. A structural code for discriminating between transcription signals revealed by the feast/famine regulatory protein DM1 in complex with ligands. Structure 15, 1325–1338.CrossRefGoogle Scholar
  56. Park, H.D., Guinn, K.M., Harrell, M.I., Liao, R., Voskuil, M.I., Tompa, M., Schoolnik, G.K., and Sherman, D.R. 2003. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48, 833–843.CrossRefGoogle Scholar
  57. Prosser, G.A. and de Carvalho, L.P. 2013. Metabolomics reveal Dalanine: D-alanine ligase as the target of D-cycloserine in Mycobacterium tuberculosis. ACS Med. Chem. Lett. 4, 1233–1237.CrossRefGoogle Scholar
  58. Rao, S.P., Alonso, S., Rand, L., Dick, T., and Pethe, K. 2008. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 105, 11945–11950.CrossRefGoogle Scholar
  59. Reddy, M.C., Gokulan, K., Jacobs, W.R. Jr., Ioerger, T.R., and Sacchettini, J.C. 2008. Crystal structure of Mycobacterium tuberculosis LrpA, a leucine-responsive global regulator associated with starvation response. Protein Sci. 17, 159–170.CrossRefGoogle Scholar
  60. Reshma, R.S., Saxena, S., Bobesh, K.A., Jeankumar, V.U., Gunda, S., Yogeeswari, P., and Sriram, D. 2016. Design and development of new class of Mycobacterium tuberculosis L-alanine dehydrogenase inhibitors. Bioorg. Med. Chem. 24, 4499–4508.CrossRefGoogle Scholar
  61. Rosenkrands, I., Slayden, R.A., Crawford, J., Aagaard, C., Barry, C.E. 3rd, and Andersen, P. 2002. Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins. J. Bacteriol. 184, 3485–3491.CrossRefGoogle Scholar
  62. Russell, D.G. 2007. Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol. 5, 39–47.Google Scholar
  63. Rustad, T.R., Sherrid, A.M., Minch, K.J., and Sherman, D.R. 2009. Hypoxia: a window into Mycobacterium tuberculosis latency. Cell. Microbiol. 11, 1151–1159.CrossRefGoogle Scholar
  64. Samala, G., Brindha Devi, P., Saxena, S., Gunda, S., Yogeeswari, P., and Sriram, D. 2016. Anti-tubercular activities of 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amine analogues endowed with high activity toward non-replicative Mycobacterium tuberculosis. Bioorg. Med. Chem. 24, 5556–5564.CrossRefGoogle Scholar
  65. Samala, G., Kakan, S.S., Nallangi, R., Devi, P.B., Sridevi, J.P., Saxena, S., Yogeeswari, P., and Sriram, D. 2014. Investigating structureactivity relationship and mechanism of action of antitubercular 1-(4-chlorophenyl)-4-(4-hydroxy-3-methoxy-5-nitrobenzylidene) pyrazolidine-3,5-dione [CD59]. Int. J. Mycobacteriol. 3, 117–126.CrossRefGoogle Scholar
  66. Saxena, S., Devi, P.B., Soni, V., Yogeeswari, P., and Sriram, D. 2014. Identification of novel inhibitors against Mycobacterium tuberculosis L-alanine dehydrogenase (MTB-AlaDH) through structure-based virtual screening. J. Mol. Graph. Model. 47, 37–43.CrossRefGoogle Scholar
  67. Saxena, S., Samala, G., Sridevi, J.P., Devi, P.B., Yogeeswari, P., and Sriram, D. 2015. Design and development of novel Mycobacterium tuberculosis L-alanine dehydrogenase inhibitors. Eur. J. Med. Chem. 92, 401–414.CrossRefGoogle Scholar
  68. Scandurra, G.M., Ryan, A.A., Pinto, R., Britton, W.J., and Triccas, J.A. 2006. Contribution of L-alanine dehydrogenase to in vivo persistence and protective efficacy of the BCG vaccine. Microbiol. Immunol. 50, 805–810.CrossRefGoogle Scholar
  69. Schnappinger, D., Ehrt, S., Voskuil, M.I., Liu, Y., Mangan, J.A., Monahan, I.M., Dolganov, G., Efron, B., Butcher, P.D., Nathan, C., et al. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198, 693–704.CrossRefGoogle Scholar
  70. Schuffenhauer, G., Schrader, T., and Andreesen, J.R. 1999. Morpholine-induced formation of L-alanine dehydrogenase activity in Mycobacterium strain HE5. Arch. Microbiol. 171, 417–423.CrossRefGoogle Scholar
  71. Sherman, D.R., Voskuil, M., Schnappinger, D., Liao, R., Harrell, M.I., and Schoolnik, G.K. 2001. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc. Natl. Acad. Sci. USA 98, 7534–7539.CrossRefGoogle Scholar
  72. Shrivastava, T., Dey, A., and Ramachandran, R. 2009. Ligand-induced structural transitions, mutational analysis, and ‘open’ quaternary structure of the M. tuberculosis feast/famine regulatory protein (Rv3291c). J. Mol. Biol. 392, 1007–1019.CrossRefGoogle Scholar
  73. Shrivastava, T. and Ramachandran, R. 2007. Mechanistic insights from the crystal structures of a feast/famine regulatory protein from Mycobacterium tuberculosis H37Rv. Nucleic Acids Res. 35, 7324–7335.CrossRefGoogle Scholar
  74. Sohaskey, C.D. and Wayne, L.G. 2003. Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J. Bacteriol. 185, 7247–7256.CrossRefGoogle Scholar
  75. Starck, J., Kallenius, G., Marklund, B.I., Andersson, D.I., and Akerlund, T. 2004. Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology 150, 3821–3829.CrossRefGoogle Scholar
  76. Suzuki, M. 2003. The DNA-binding specificity of eubacterial and archaeal FFRPs. Proc. Jpn. Acad. 79B, 213–222.CrossRefGoogle Scholar
  77. Thaw, P., Sedelnikova, S.E., Muranova, T., Wiese, S., Ayora, S., Alonso, J.C., Brinkman, A.B., Akerboom, J., van der Oost, J., and Rafferty, J.B. 2006. Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. Nucleic Acids Res. 34, 1439–1449.CrossRefGoogle Scholar
  78. Tripathi, S.M. and Ramachandran, R. 2008a. Crystal structures of the Mycobacterium tuberculosis secretory antigen alanine dehydrogenase (Rv2780) in apo and ternary complex forms captures “open” and “closed” enzyme conformations. Proteins 72, 1089–1095.CrossRefGoogle Scholar
  79. Tripathi, S.M. and Ramachandran, R. 2008b. Overexpression, purification, crystallization and preliminary X-ray analysis of Rv-2780 from Mycobacterium tuberculosis H37Rv. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64, 367–370.CrossRefGoogle Scholar
  80. Usha, V., Jayaraman, R., Toro, J.C., Hoffner, S.E., and Das, K.S. 2002. Glycine and alanine dehydrogenase activities are catalyzed by the same protein in Mycobacterium smegmatis: upregulation of both activities under microaerophilic adaptation. Can. J. Microbiol. 48, 7–13.CrossRefGoogle Scholar
  81. van der Woude, M.W. and Low, D.A. 1994. Leucine-responsive regulatory protein and deoxyadenosine methylase control the phase variation and expression of the sfa and daa pili operons in Escherichia coli. Mol. Microbiol. 11, 605–618.CrossRefGoogle Scholar
  82. Voskuil, M.I., Schnappinger, D., Visconti, K.C., Harrell, M.I., Dolganov, G.M., Sherman, D.R., and Schoolnik, G.K. 2003. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198, 705–713.CrossRefGoogle Scholar
  83. Wang, Q. and Calvo, J.M. 1993. Lrp, a global regulatory protein of Escherichia coli, binds co-operatively to multiple sites and activates transcription of ilvIH. J. Mol. Biol. 229, 306–318.CrossRefGoogle Scholar
  84. Watanabe, S., Zimmermann, M., Goodwin, M.B., Sauer, U., Barry, C.E. 3rd, and Boshoff, H.I. 2011. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog. 7, e1002287.CrossRefGoogle Scholar
  85. Wayne, L.G. and Hayes, L.G. 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun. 64, 2062–2069.Google Scholar
  86. Wayne, L.G. and Lin, K.Y. 1982. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect. Immun. 37, 1042–1049.Google Scholar
  87. Wayne, L.G. and Sohaskey, C.D. 2001. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139–163.CrossRefGoogle Scholar
  88. Wiese, D.E. 2nd, Ernsting, B.R., Blumenthal, R.M., and Matthews, R.G. 1997. A nucleoprotein activation complex between the leucine-responsive regulatory protein and DNA upstream of the gltBDF operon in Escherichia coli. J. Mol. Biol. 270, 152–168.CrossRefGoogle Scholar
  89. Yamada, M., Ishijima, S.A., and Suzuki, M. 2009. Interactions between the archaeal transcription repressor FL11 and its coregulators lysine and arginine. Proteins 74, 520–525.CrossRefGoogle Scholar
  90. Yang, L., Lin, R.T., and Newman, E.B. 2002. Structure of the Lrpregulated serA promoter of Escherichia coli K-12. Mol. Microbiol. 43, 323–333.CrossRefGoogle Scholar
  91. Yokoyama, K., Ishijima, S.A., Koike, H., Kurihara, C., Shimowasa, A., Kabasawa, M., Kawashima, T., and Suzuki, M. 2007. Feast/ famine regulation by transcription factor FL11 for the survival of the hyperthermophilic archaeon Pyrococcus OT3. Structure 15, 1542–1554.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Integrated Biological SciencePusan National UniversityBusanRepublic of Korea

Personalised recommendations