Advertisement

Arthrobacter dokdonellae sp. nov., isolated from a plant of the genus Campanula

  • Hyeon-Woo Koh
  • Myung-Suk Kang
  • Ki-Eun Lee
  • Eun-Young Lee
  • Hongik Kim
  • Soo-Je ParkEmail author
Article

Abstract

A Gram-stain-positive, oxidase- and catalase-positive motile, aerobic, and rod-shaped bacterial strain, designated as DCT-5T, was isolated from a native plant belonging to the genus Campanula at Dokdo island, Republic of Korea. Growth of the strain DCT-5T was observed at 15–37°C (optimum 30°C) on R2A broth, pH 6.0–8.0 (optimum 7.0), and 0–5% (w/v) NaCl concentration (optimum 0%). The 16S rRNA gene sequence analysis revealed that strain DCT-5T was most closely related to Arthrobacter silviterrae KIS14-16T, Arthrobacter livingstonensis LI2T, Arthrobacter stackebrandtii CCM 2783T, Arthrobacter cryoconiti Cr6-08T, Arthrobacter ramosus CCM 1646T, and Arthrobacter psychrochitiniphilus GP3T with pairwise sequence similarities of 98.76%, 97.47%, 97.25%, 97.11%, 97.11%, and 97.00%, respectively. The DNA G+C content of strain DCT-5T was 64.7 mol%, and its DNA-DNA relatedness values with A. silviterrae KIS14-16T, A. livingstonensis LI2T, A. stackebrandtii CCM 2783T, A. psychrochitiniphilus GP3T, A. ramosus CCM 1646T, and A. cryoconiti Cr6-08T were 32.57 ± 2.02%, 28.75 ± 0.88%, 31.93 ± 1.15%, 34.73 ± 1.86%, 29.12 ± 1.56%, and 27.23 ± 0.88%, respectively. The major quinone was MK-9(H2) and major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C15:0, and iso-C16:0. The polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylinositol (PI), unidentified glycolipid (GL), two unidentified aminophospholipids (APLs), and three unidentified lipids (Ls). The peptidoglycan type was A3α. On the basis of phenotypic, phylogenetic, genotypic, and chemotaxonomic characteristics, strain DCT-5T represents a novel species of the genus Arthrobacter, for which the name Arthrobacter dokdonellae sp. nov. is proposed. The type strain is DCT-5T (= KCTC 49189T = LMG 31284T).

Keywords

Arthrobacter dokdonellae sp. nov. Dokdo Campanula polyphasic novel species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, Y.G., Tang, S.K., Zhang, Y.Q., Li, Z.Y., Yi, L.B., Wang, Y.X., Li, W.J., and Cui, X.L. 2009. Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie van Leeuwenhoek 96, 63–70.CrossRefGoogle Scholar
  2. Conn, H. and Dimmick, I. 1947. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J. Bacteriol. 54, 291.Google Scholar
  3. Dastager, S.G., Liu, Q., Tang, S.K., Krishnamurthi, S., Lee, J.C., and Li, W.J. 2014. Arthrobacter enclensis sp. nov., isolated from sediment sample. Arch. Microbiol. 196, 775–782.CrossRefGoogle Scholar
  4. Ding, L., Hirose, T., and Yokota, A. 2009. Four novel Arthrobacter species isolated from filtration substrate. Int. J. Syst. Evol. Microbiol. 59, 856–862.CrossRefGoogle Scholar
  5. Ensign, J.C. and Rittenberg, S.C. 1963. A crystalline pigment produced from 2-hydroxypyridine by Arthrobacter crystallopoietes n. sp. Archiv. für Mikrobiologie 47, 137–153.CrossRefGoogle Scholar
  6. Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol. 39, 224–229.Google Scholar
  7. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefGoogle Scholar
  8. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefGoogle Scholar
  9. Fischer, M. and Thatte, B. 2010. Revisiting an equivalence between maximum parsimony and maximum likelihood methods in phylogenetics. Bull. Math. Biol. 72, 208–220.CrossRefGoogle Scholar
  10. Ganzert, L., Bajerski, F., Mangelsdorf, K., Lipski, A., and Wagner, D. 2011. Arthrobacter livingstonensis sp. nov. and Arthrobacter cryotolerans sp. nov., salt-tolerant and psychrotolerant species from Antarctic soil. Int. J. Syst. Evol. Microbiol. 61, 979–984.CrossRefGoogle Scholar
  11. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.Google Scholar
  12. Hoang, V.A., Kim, Y.J., Nguyen, N.L., and Yang, D.C. 2014. Arthrobacter gyeryongensis sp. nov., isolated from soil of a Gynostemma pentaphyllum field. Int. J. Syst. Evol. Microbiol. 64, 420–425.CrossRefGoogle Scholar
  13. Hu, H.Y., Fujie, K., and Urano, K. 1999. Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J. Biosci. Bioeng. 87, 378–382.CrossRefGoogle Scholar
  14. Kageyama, A., Morisaki, K., Omura, S., and Takahashi, Y. 2008. Arthrobacter oryzae sp. nov. and Arthrobacter humicola sp. nov. Int. J. Syst. Evol. Microbiol. 58, 53–56.CrossRefGoogle Scholar
  15. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefGoogle Scholar
  16. Koh, H.W., Hong, H., Min, U.G., Kang, M.S., Kim, S.G., Na, J.G., Rhee, S.K., and Park, S.J. 2015a. Rhodanobacter aciditrophus sp. nov., an acidophilic bacterium isolated from mine wastewater. Int. J. Syst. Evol. Microbiol. 65, 4574–4579.CrossRefGoogle Scholar
  17. Koh, H.W., Song, H.S., Song, U., Yim, K.J., Roh, S.W., and Park, S.J. 2015b. Halolamina sediminis sp. nov., an extremely halophilic archaeon isolated from solar salt. Int. J. Syst. Evol. Microbiol. 65, 2479–2484.CrossRefGoogle Scholar
  18. Komagata, K. and Suzuki, K.I. 1988. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 161–207.CrossRefGoogle Scholar
  19. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefGoogle Scholar
  20. Lee, J.Y., Hyun, D.W., Kim, P.S., Kim, H.S., Shin, N.R., Yun, J.H., Jung, M.J., Kim, M.S., Whon, T.W., and Bae, J.W. 2016. Arthrobacter echini sp. nov., isolated from the gut of a purple sea urchin, Heliocidaris crassispina. Int. J. Syst. Evol. Microbiol. 66, 1887–1893.CrossRefGoogle Scholar
  21. Lee, S.A., Kim, J.M., Cho, H., Kim, S.J., Ahn, J.H., Hamada, M., Kwon, S.W., and Weon, H.Y. 2017. Arthrobacter silviterrae sp. nov., isolated from forest soil. Int. J. Syst. Evol. Microbiol. 67, 4546–4551.CrossRefGoogle Scholar
  22. Lee, J.S., Lee, K.C., Pyun, Y.R., and Bae, K.S. 2003. Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. Int. J. Syst. Evol. Microbiol. 53, 1277–1280.CrossRefGoogle Scholar
  23. Liu, Q., Xin, Y.H., Chen, X.L., Liu, H.C., Zhou, Y.G., and Chen, W.X. 2018. Arthrobacter ruber sp. nov., isolated from glacier ice. Int. J. Syst. Evol. Microbiol. 68, 1616–1621.CrossRefGoogle Scholar
  24. Margesin, R., Schumann, P., Zhang, D.C., Redzic, M., Zhou, Y.G., Liu, H.C., and Schinner, F. 2012. Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int. J. Syst. Evol. Microbiol. 62, 397–402.CrossRefGoogle Scholar
  25. Park, Y., Kook, M., Ngo, H.T., Kim, K.Y., Park, S.Y., Mavlonov, G.T., and Yi, T.H. 2014. Arthrobacter bambusae sp. nov., isolated from soil of a bamboo grove. Int. J. Syst. Evol. Microbiol. 64, 3069–3074.CrossRefGoogle Scholar
  26. Reddy, G.S., Aggarwal, R.K., Matsumoto, G.I., and Shivaji, S. 2000. Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int. J. Syst. Evol. Microbiol. 50Pt 4, 1553–1561.CrossRefGoogle Scholar
  27. Reddy, G.S., Prakash, J.S., Matsumoto, G.I., Stackebrandt, E., and Shivaji, S. 2002. Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an antarctic cyanobacterial mat sample. Int. J. Syst. Evol. Microbiol. 52, 1017–1021.Google Scholar
  28. Sacks, L.E. 1954. Observations on the morphogenesis of Arthrobacter citreus, spec nov. J. Bacteriol. 67, 342–345.Google Scholar
  29. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.Google Scholar
  30. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI, Technical note #101.Google Scholar
  31. Schleifer, K.H. and Kandler, O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407.Google Scholar
  32. Siddiqi, M.Z., Kim, Y.J., Hoang, V.A., Siddiqi, M.H., Huq, M.A., and Yang, D.C. 2014. Arthrobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Arch. Microbiol. 196, 863–870.CrossRefGoogle Scholar
  33. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefGoogle Scholar
  34. Tvrzova, L., Schumann, P., Sproer, C., Sedlacek, I., Verbarg, S., Kroppenstedt, R.M., and Pacova, Z. 2005. Polyphasic taxonomic study of strain CCM 2783 resulting in the description of Arthrobacter stackebrandtii sp. nov. Int. J. Syst. Evol. Microbiol. 55, 805–808.CrossRefGoogle Scholar
  35. Wang, F., Gai, Y., Chen, M., and Xiao, X. 2009. Arthrobacter psychrochitiniphilus sp. nov., a psychrotrophic bacterium isolated from Antarctica. Int. J. Syst. Evol. Microbiol. 59, 2759–2762.CrossRefGoogle Scholar
  36. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.CrossRefGoogle Scholar
  37. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  • Hyeon-Woo Koh
    • 1
  • Myung-Suk Kang
    • 2
  • Ki-Eun Lee
    • 3
  • Eun-Young Lee
    • 3
  • Hongik Kim
    • 1
  • Soo-Je Park
    • 4
    Email author
  1. 1.R&D DivisionVITABIO, Inc.DaejeonRepublic of Korea
  2. 2.Biological Resources Utilization DepartmentNational Institute of Biological ResourcesIncheonRepublic of Korea
  3. 3.Microorganism Resources DivisionNational Institute of Biological ResourcesIncheonRepublic of Korea
  4. 4.Department of BiologyJeju National UniversityJejuRepublic of Korea

Personalised recommendations