Journal of Microbiology

, Volume 57, Issue 5, pp 388–395 | Cite as

Growth and differentiation properties of pikromycin-producing Streptomyces venezuelae ATCC15439

  • Ji-Eun Kim
  • Joon-Sun Choi
  • Jung-Hye RoeEmail author


Streptomycetes naturally produce a variety of secondary metabolites, in the process of physiological differentiation. Streptomyces venezuelae differentiates into spores in liquid media, serving as a good model system for differentiation and a host for exogenous gene expression. Here, we report the growth and differentiation properties of S. venezuelae ATCC-15439 in liquid medium, which produces pikromycin, along with genome-wide gene expression profile. Comparison of growth properties on two media (SPA, MYM) revealed that the stationary phase cell viability rapidly decreased in SPA. Submerged spores showed partial resistance to lysozyme and heat, similar to what has been observed for better-characterized S. venezuelae ATCC10712, a chloramphenicol producer. TEM revealed that the differentiated cells in the submerged culture showed larger cell size, thinner cell wall than the aerial spores. We analyzed transcriptome profiles of cells grown in liquid MYM at various growth phases. During transition and/or stationary phases, many differentiationrelated genes were well expressed as judged by RNA level, except some genes forming hydrophobic coats in aerial mycelium. Since submerged spores showed thin cell wall and partial resistance to stresses, we examined cellular expression of MreB protein, an actin-like protein known to be required for spore wall synthesis in Streptomycetes. In contrast to aerial spores where MreB was localized in septa and spore cell wall, submerged spores showed no detectable signal. Therefore, even though the mreB transcripts are abundant in liquid medium, its protein level and/or its interaction with spore wall synthetic complex appear impaired, causing thinner- walled and less sturdy spores in liquid culture.


Streptomyces venezuelae submerged spore differentiation MreB 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bibb, M.J., Domonkos, A., Chandra, G., and Buttner, M.J. 2012. Expression of the chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by σBldN and a cognate anti-sigma factor, RsbN. Mol. Microbiol. 84, 1033–1049.CrossRefPubMedGoogle Scholar
  2. Davies, J. 2013. Specialized microbial metabolites: functions and origins. J. Antibiot. 66, 361–364.CrossRefPubMedGoogle Scholar
  3. Daza, A., Martin, J.F., Dominguez, A., and Gil, J.A. 1989. Sporulation of several species of Streptomyces in submerged cultures after nutritional downshift. Microbiology 135, 2483–2491.CrossRefGoogle Scholar
  4. Donczew, M., Mackiewicz, P., Wrobel, A., Flardh, K., Zakrzewska-Czerwinska, J., and Jakimowicz, D. 2016. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation. Open Biol. 6, 150263.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Doull, J.L., Singh, A.K., Hoare, M., and Ayer, S.W. 1993. Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J. Antibiot. 46, 869–871.CrossRefPubMedGoogle Scholar
  6. Elliot, M.A., Karoonuthaisiri, N., Huang, J., Bibb, M.J., Cohen, S.N., Kao, C.M., and Buttner, M.J. 2003. The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev. 17, 1727–1740.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Flärdh, K. and Buttner, M.J. 2009. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7, 36–49.CrossRefPubMedGoogle Scholar
  8. Glazebrook, M.A., Doull, J.L., Stuttard, C., and Vining, L.C. 1990. Sporulation of Streptomyces venezuelae in submerged cultures. J. Gen. Microbiol. 136, 581–588.CrossRefPubMedGoogle Scholar
  9. Grantcharova, N., Lustig, U., and Flärdh, K. 2005. Dynamics of FtsZ assembly during sporulation in Streptomyces coelicolor A3 (2). J. Bacteriol. 87, 3227–3237.CrossRefGoogle Scholar
  10. Green, M.R. and Sambrook, J. 2012. Molecular cloning: a laboratory manual, 4th ed. Cold Spring Harbor Laboratory Press, New York, N.Y., USA.Google Scholar
  11. He, J., Sundararajan, A., Devitt, N.P., Schilkey, F.D., Ramaraj, T., and Melançon, C.E. 2016. Complete genome sequence of Streptomyces venezuelae ATCC 15439, producer of the methymycin/ pikromycin family of macrolide antibiotics, using PacBio technology. Genome Announc. 4, e00337–16.PubMedPubMedCentralGoogle Scholar
  12. Hopwood, D.A. 2007. Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press.Google Scholar
  13. Jakimowicz, D. and van Wezel, G.P. 2012. Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere? Mol. Microbiol. 85, 393–404.Google Scholar
  14. Jung, W.S., Lee, S.K., Hong, J.S.J., Park, S.R., Jeong, S.J., Han, A.R., Sohng, J.K., Kim, B.G., Choi, C.Y., and Sherman, D.H. 2006. Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Appl. Microbiol. Biotechnol. 72, 763–769.CrossRefPubMedGoogle Scholar
  15. Kendrick, K.E. and Ensign, J.C. 1983. Sporulation of Streptomyces griseus in submerged culture. J. Bacteriol. 155, 357–366.PubMedPubMedCentralGoogle Scholar
  16. Kieser, T., Bibb, M., Buttner, M., Chater, K., and Hopwood, D. 2000. Practical Streptomyces genetics. The John Innes Foundation, Norwich, UK.Google Scholar
  17. Kim, Y.M. and Kim, J.h. 2004. Formation and dispersion of mycelial pellets of Streptomyces coelicolor A3 (2). J. Microbiol. 42, 64–67.PubMedGoogle Scholar
  18. Kim, E.J., Yang, I., and Yoon, Y.J. 2015. Developing Streptomyces venezuelae as a cell factory for the production of small molecules used in drug discovery. Arch. Pharm. Res. 38, 1606–1616.CrossRefPubMedGoogle Scholar
  19. Kittendorf, J.D. and Sherman, D.H. 2009. The methymycin/pikromycin pathway: A model for metabolic diversity in natural product biosynthesis. Bioorg. Med. Chem. 17, 2137–2146.CrossRefPubMedGoogle Scholar
  20. Kleinschnitz, E.M., Heichlinger, A., Schirner, K., Winkler, J., Latus, A., Maldener, I., Wohlleben, W., and Muth, G. 2011. Proteins encoded by the mre gene cluster in Streptomyces coelicolor A3 (2) cooperate in spore wall synthesis. Mol. Microbiol. 79, 1367–1379.CrossRefPubMedGoogle Scholar
  21. Lee, K.J. and Rho, Y.T. 1993. Characteristics of spores formed by surface and submerged cultures of Streptomyces albidoflavus SMF- 301. Microbiology 139, 3131–3137.Google Scholar
  22. Manteca, A., Alvarez, R., Salazar, N., Yagüe, P., and Sanchez, J. 2008. Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Appl. Environ. Microbiol. 74, 3877–3886.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mazza, P., Noens, E.E., Schirner, K., Grantcharova, N., Mommaas, A.M., Koerten, H.K., Muth, G., Flärdh, K., Van Wezel, G.P., and Wohlleben, W. 2006. MreB of Streptomyces coelicolor is not essential for vegetative growth but is required for the integrity of aerial hyphae and spores. Mol. Microbiol. 60, 838–852.CrossRefPubMedGoogle Scholar
  24. McCormick, J.R. and Flärdh, K. 2012. Signals and regulators that govern Streptomyces development. FEMS Microbiol. Rev. 36, 206–231.CrossRefPubMedGoogle Scholar
  25. Morris, J.K. 1965. A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137.Google Scholar
  26. Novella, I.S., Barbés, C., and Sánchez, J. 1992. Sporulation of Streptomyces antibioticus ETHZ 7451 in submerged culture. Can. J. Microbiol. 38, 769–773.CrossRefPubMedGoogle Scholar
  27. Rueda, B., Miguélez, E.M., Hardisson, C., and Manzanal, M.B. 2001. Mycelial differentiation and spore formation by Streptomyces brasiliensis in submerged culture. Can. J. Microbiol. 47, 1042–1047.CrossRefPubMedGoogle Scholar
  28. Santos-Beneit, F., Gu, J.Y., Stimming, U., and Errington, J. 2017. ylmD and ylmE genes are dispensable for growth, cross-wall formation and sporulation in Streptomyces venezuelae. Heliyon 3, e00459.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Schwedock, J., McCormick, J., Angert, E., Nodwell, J., and Losick, R. 1997. Assembly of the cell division protein FtsZ into ladderlike structures in the aerial hyphae of Streptomyces coelicolor. Mol. Microbiol. 25, 847–858.CrossRefPubMedGoogle Scholar
  30. Sigle, S., Ladwig, N., Wohlleben, W., and Muth, G. 2015. Synthesis of the spore envelope in the developmental life cycle of Streptomyces coelicolor. Int. J. Med. Microbiol. 305, 183–189.CrossRefPubMedGoogle Scholar
  31. Song, J.Y., Yoo, Y.J., Lim, S.K., Cha, S.H., Kim, J.E., Roe, J.H., Kim, J.F., and Yoon, Y.J. 2016. Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites. J. Biotechnol. 219, 57–58.CrossRefPubMedGoogle Scholar
  32. Stuttard, C. 1982. Temperate phages of Streptomyces venezuelae: lysogeny and host specificity shown by phages SV1 and SV2. Microbiology 128, 115–121.CrossRefGoogle Scholar
  33. van Dissel, D., Claessen, D., and van Wezel, G.P. 2014. Morphogenesis of Streptomyces in submerged cultures. Adv. Appl. Microbiol. 89, 1–45.CrossRefPubMedGoogle Scholar
  34. van Keulen, G. and Dyson, P.J. 2014. Production of specialized metabolites by Streptomyces coelicolor A3 (2). Adv. Appl. Microbiol. 89, 217–266.CrossRefPubMedGoogle Scholar
  35. van Wezel, G.P., Krabben, P., Traag, B.A., Keijser, B.J., Kerste, R., Vijgenboom, E., Heijnen, J.J., and Kraal, B. 2006. Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl. Environ. Microbiol. 72, 5283–5288.CrossRefPubMedPubMedCentralGoogle Scholar
  36. van Wezel, G.P. and McDowall, K.J. 2011. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat. Prod. Rep. 28, 1311–1333.CrossRefPubMedGoogle Scholar
  37. Wilson, D.J., Xue, Y., Reynolds, K.A., and Sherman, D.H. 2001. Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J. Bacteriol. 183, 3468–3475.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Xue, Y. and Sherman, D.H. 2001. Biosynthesis and combinatorial biosynthesis of pikromycin-related macrolides in Streptomyces venezuelae. Metab. Eng. 3, 15–26.CrossRefPubMedGoogle Scholar
  39. Yi, J.S., Kim, M., Kim, E.J., and Kim, B.G. 2018. Production of pikromycin using branched chain amino acid catabolism in Streptomyces venezuelae ATCC 15439. J. Ind. Microbiol. Biotechnol. 45, 293–303.CrossRefPubMedGoogle Scholar
  40. Yin, P., Wang, Y.H., Zhang, S.L., Chu, J., Zhuang, Y.P., Chen, N., Li, X.F., and Wu, Y.B. 2008. Effect of mycelial morphology on bioreactor performance and avermectin production of Streptomyces avermitilis in submerged cultivations. J. Chinese Inst. Chem. Eng. 39, 609–615.CrossRefGoogle Scholar
  41. Yoon, Y.J., Beck, B.J., Kim, B.S., Kang, H.Y., Reynolds, K.A., and Sherman, D.H. 2002. Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae. Chem. Biol. 9, 203–214.CrossRefPubMedGoogle Scholar
  42. Yoon, S.H., Ha, S.M., Lim, J., Kwon, S., and Chun, J. 2017. A largescale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 110, 1281–1286.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  1. 1.Laboratory of Molecular Microbiology, School of Biological Sciences, College of Natural SciencesSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations