Advertisement

Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea

  • Kwan Soo KoEmail author
Minireview
  • 35 Downloads

Abstract

Antibiotic resistance is a global concern in public health. Antibiotic-resistant clones can spread nationally, internationally, and globally. This review considers representative antibiotic-resistant Gram-negative bacterial clones–CTX-M- 15-producing ST131 in Escherichia coli, extended-spectrum β-lactamase-producing ST11 and KPC-producing ST258 in Klebsiella pneumoniae, IMP-6-producing, carbapenem-resistant ST235 in Pseudomonas aeruginosa, and OXA-23-producing global clone 2 in Acinetobacter baumannii–that have disseminated worldwide, including in Korea. The findings highlight the urgency for systematic monitoring and international cooperation to suppress the emergence and propagation of antibiotic resistance.

Keywords

Escherichia coli Klebsiella pneumoniae Pseudomonas aeruginosa Acinetobacter baumannii 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.D., Goglin, K., Molyneaux, N., Hujer, K.M., Lavender, H., Jamison, J.J., MacDonald, I.J., Martin, K.M., Russo, T., Campagnari, A.A., et al. 2008. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J. Bacteriol. 190, 8053–8064.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adams-Haduch, J.M., Onuoha, E.O., Bogdanovich, T., Tian, G.B., Marschall, J., Urban, C.M., Spellberg, B.J., Rhee, D., Halstead, D.C., Pasculle, A.W., et al. 2011. Molecular epidemiology of carbapenem- nonsusceptible Acinetobacter baumannii in the United States. J. Clin. Microbiol. 49, 3849–3854.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Al-Baloushi, A.E., Pál, T., Ghazawi, A., and Sonnevend, A. 2018. Genetic support of carbapenemases in double carbapenemase producer Klebsiella pneumoniae isolated in the Arabian Peninsula. Acta Microbiol. Immunol. Hung. 65, 135–150.CrossRefPubMedGoogle Scholar
  4. Bae, I.K., Suh, B., Jeong, S.H., Wang, K.K., Kim, Y.R., Yong, D., and Lee, K. 2014. Molecular epidemiology of Pseudomonas aeruginosa clinical isolates from Korea producing β-lactamases with extended-spectrum activity. Diagn. Microbiol. Infect. Dis. 79, 373–377.CrossRefPubMedGoogle Scholar
  5. Banerjee, R. and Johnson, J.R. 2014. A new clone sweeps clean: The enigmatic emergence of Escherichia coli sequence type 131. Antimicrob. Agents Chemother. 58, 4997–5004.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baraniak, A., Izdebski, R., Fiett, J., Gawryszewska, I., Bojarska, K., Herda, M., Literacka, E., Zabicka, D., Tomczak, H., Pewinska, N., et al. 2016. NDM-producing Enterobacteriaceae in Poland, 2012- 14: Inter-regional outbreak of Klebsiella pneumoniae ST11 and sporadic cases. J. Antimicrob. Chemother. 71, 85–91.CrossRefPubMedGoogle Scholar
  7. Bartual, S.G., Seifert, H., Hippler, C., Luzon, M.A., Wisplinghoff, H., and Rodríguez-Valera, F. 2005. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J. Clin. Microbiol. 43, 4382–4390.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bellés, A., Bueno, J., Rojo-Bezares, B., Torres, C., Javier Castillo, F., Sáenz, Y., and Seral, C. 2018. Characterisation of VIM-2-producing Pseudomonas aeruginosa isolates from lower tract respiratory infections in a Spanish hospital. Eur. J. Clin. Microbiol. Infect. Dis. (In press).Google Scholar
  9. Botelho, J., Grosso, F., and Peixe, L. 2018. Unravelling the genome of a Pseudomonas aeruginosa isolate belonging to the high-risk clone ST235 reveals an integrative conjugative element housing a blaGES-6 carbapenemase. J. Antimicrob. Chemother. 73, 77–83.CrossRefPubMedGoogle Scholar
  10. Boucher, H.W., Talbot, G.H., Bradley, J.S., Edwards, J.E., Gilbert, D., Rice, L.B., Scheld, M., Spellberg, B., and Bartlett, J. 2009. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12.CrossRefPubMedGoogle Scholar
  11. Brüggemann, H., Migliorini, L.B., Sales, R.O., Koga, P.C.M., Souza, A.V., Jensen, A., Poehlein, A., Brzuszkiewicz, E., Doi, A.M., Pasternak, J., et al. 2018. Comparative genomics of nonoutbreak Pseudomonas aeruginosa strains underlines genome plasticity and geographic relatedness of the global clone ST235. Genome Biol. Evol. 10, 1852–1857.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cagnacci, S., Gualco, L., Debbia, E., Schito, G.C., and Marchese, A. 2008. European emergence of ciprofloxacin-resistant Escherichia coli clonal groups O25:H4-ST131 and O15:K52:H1 causing community- acquired uncomplicated cystitis. J. Clin. Microbiol. 46, 2605–2612.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carattoli, A., Fortini, D., Galetti, R., Garcia-Fernandez, A., Nardi, G., Orazi, D., Capone, A., Majolino, I., Proia, A., Mariani, B., et al. 2013. Isolation of NDM-1-producing Pseudomonas aeruginosa sequence type ST235 from a stem cell transplant patient in Italy, May 2013. Euro Surveill. 18, 1–3.CrossRefGoogle Scholar
  14. Cha, M.K., Kang, C.I., Kim, S.H., Thamlikitkul, V., So, T.M., Ha, Y.E., Chung, D.R., Peck, K.R., and Song, J.H. 2017. Emergence and dissemination of ST131 Escherichia coli isolates among patients with hospital-acquired pneumonia in Asian countries. Microb. Drug Resist. 23, 79–82.CrossRefPubMedGoogle Scholar
  15. Chen, L., Mathema, B., Pitout, J.D.D., and Kreiswirth, B.N. 2014. Epidemic Klebsiella pneumoniae ST258 is a hybrid strain. mBio 5, e01355–14.PubMedPubMedCentralGoogle Scholar
  16. Chiu, S.K., Wu, T.L., Chuang, Y.C., Lin, J.C., Fung, C.P., Lu, P.L., Wang, J.T., Wang, L.S., Siu, L.K., and Yeh, K.M. 2013. National surveillance study on carbapenem non-susceptible Klebsiella pneumoniae in Taiwan: The emergence and rapid dissemination of KPC-2 carbapenemase. PLoS One 8, e69428.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cho, S.Y., Huh, H.J., Baek, J.Y., Chung, N.Y., Ryu, J.G., Chung, D.R., Lee, N.Y., and Song, J.H. 2015. Klebsiella pneumoniae coproducing NDM-5 and OXA-181 carbapenemases, South Korea. Emerg. Infect. Dis. 21, 1088–1089.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cho, H.H., Kwon, K.C., Sung, J.Y., and Koo, S.H. 2013a. Prevalence and genetic analysis of multidrug-resistant Pseudomonas aeruginosa ST235 isolated from a hospital in Korea, 2008, 2012. Ann. Clin. Lab. Sci. 43, 414–419.PubMedGoogle Scholar
  19. Cho, H.H., Kwon, K.C., Sung, J.Y., and Koo, S.H. 2013b. Spread and genetic characterization of ST137 and ST138 multidrug-resistant Acinetobacter baumannii isolated from a tertiary hospital in Korea. Ann. Clin. Lab. Sci. 43, 145–150.PubMedGoogle Scholar
  20. Colpan, A., Johnston, B., Porter, S., Clabots, C., Anway, R., Thao, L., Kuskowski, M.A., Tchesnokova, V., Sokurenko, E.V., Johnson, J.R., et al. 2013. Escherichia coli sequence type 131 (ST131) subclone H30 as an emergent multidrug-resistant pathogen among US veterans. Clin. Infect. Dis. 57, 1256–1265.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Coque, T.M., Novais, A., Carattoli, A., Poirel, L., Pitout, J., Peixe, L., Baquero, F., Canton, R., and Nordmann, P. 2008. Dissemination of clonally related Escherichia coli strains expressing extendedspectrum β-lactamase CTX-M-15. Emerg. Infect. Dis. 14, 195–200.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cosgrove, S.E. 2006. The relationship between antimicrobial resistance and patient outcomes: Mortality, length of hospital stay, and health care costs. Clin. Infect. Dis. 42(Suppl 2), S82–S89.CrossRefPubMedGoogle Scholar
  23. Davies, J. and Davies, D. 2010. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433.CrossRefPubMedPubMedCentralGoogle Scholar
  24. DeLeo, F.R., Chen, L., Porcella, S.F., Martens, C.A., Kobayashi, S.D., Porter, A.R., Chavda, K.D., Jacobs, M.R., Mathema, B., Olsen, R.J., et al. 2014. Molecular dissection of the evolution of carbapenem- resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc. Natl. Acad. Sci. USA 111, 4988–4993.CrossRefPubMedGoogle Scholar
  25. de Paula-Petroli, S.B., Campana, E.H., Bocchi, M., Bordinhão, T., Picão, R.C., Yamada-Ogatta, S.F., and Carrara-Marroni, F.E. 2018. Early detection of a hypervirulent KPC-2-producing Pseudomonas aeruginosa ST235 in Brazil. J. Glob. Antimicrob. Resist. 12, 153–154.CrossRefPubMedGoogle Scholar
  26. Diancourt, L., Passet, V., Nemec, A., Dijkshoorn, L., and Brisse, S. 2010. The population structure of Acinetobacter baumannii: Expanding multiresistant clones from an ancestor susceptible genetic pool. PLoS One 5, e10034.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Edelstein, M.V., Skleenova, E.N., Shevchenko, O.V., D’souza, J.W., Tapalski, D.V., Azizov, I.S., Sukhorukova, M.V., Pavlukov, R.A., Kozlov, R.S., Toleman, M.A., et al. 2013. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: A longitudinal epidemiological and clinical study. Lancet Infect. Dis. 13, 867–876.CrossRefPubMedGoogle Scholar
  28. Feng, Y., Ruan, Z., Shu, J., Chen, C.L., and Chiu, C.H. 2016. A glimpse into evolution and dissemination of multidrug-resistant Acinetobacter baumannii isolates in East Asia: A comparative genomics study. Sci. Rep. 6, 24342.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fournier, P.E., Vallenet, D., Barbe, V., Audic, S., Ogata, H., Poirel, L., Richet, H., Robert, C., Mangenot, S., Abergel, C., et al. 2006. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2, e7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Freschi, L., Jeukens, J., Kukavica-Ibrulj, I., Boyle, B., Dupont, M.J., Laroche, J., Larose, S., Maaroufi, H., Fothergill, J.L., Moore, M., et al. 2015. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front. Microbiol. 6, 1036.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gamal, D., Fernández-Martínez, M., Salem, D., El-Defrawy, I., Montes, L.Á., Ocampo-Sosa, A.A., and Martínez-Martínez, L. 2016. Carbapenem-resistant Klebsiella pneumoniae isolates from Egypt containing blaNDM-1 on IncR plasmids and its association with rmtF. Int. J. Infect. Dis. 43, 17–20.CrossRefPubMedGoogle Scholar
  32. Graham, S.E., Zhang, L., Ali, I., Cho, Y.K., Ismail, M.D., Carlson, H.A., and Foxma, B. 2016. Prevalence of CTX-M extended-spectrum beta-lactamases and sequence type 131 in Korean blood, urine, and rectal Escherichia coli isolates. Infect. Genet. Evol. 41, 292–295.CrossRefPubMedGoogle Scholar
  33. Ha, Y.E., Kang, C.I., Cha, M.K., Park, S.Y., Wi, Y.M., Chung, D.R., Peck, K.R., Lee, N.Y., and Song, J.H. 2013. Epidemiology and clinical outcomes of bloodstream infections caused by extendedspectrum β-lactamase-producing Escherichia coli in patients with cancer. Int. J. Antimicrob. Agents 42, 403–409.CrossRefPubMedGoogle Scholar
  34. Hagemann, J.B., Pfennigwerth, N., Gatermann, S.G., von Baum, H., and Essig, A. 2018. KPC-2 carbapenemase-producing Pseudomonas aeruginosa reaching Germany. J. Antimicrob. Chemother. (In press).Google Scholar
  35. Hamidian, M., Nigro, S.J., and Hall, R.M. 2017. Problems with the Oxford multilocus sequence typing scheme for Acinetobacter baumannii: do sequence type 92 (ST92) and ST109 exist? J. Clin. Microbiol. 55, 2287–2289.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Heo, S.T., Oh, W.S., Kim, S.J., Bae, I.G., Ko, K.S., and Lee, J.C. 2011. Clinical impacts of a single clone (sequence type 92) of multidrug- resistant Acinetobacter baumannii in intensive care units. Microb. Drug Resist. 17, 559–562.CrossRefPubMedGoogle Scholar
  37. Ho, P.L., Tse, C.W., Lai, E.L., Lo, W.U., and Chow, K.H. 2011. Emergence of Klebsiella pneumoniae ST258 with KPC-2 in Hong Kong. Int. J. Antimicrob. Agents 37, 386–387.CrossRefPubMedGoogle Scholar
  38. Hong, J.S., Kim, J.O., Lee, H., Bae, I.K., Jeong, S.H., and Lee, K. 2015. Characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa in Korea. Infect. Chemother. 47, 33–40.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hong, J.S., Yoon, E.J., Lee, H., Jeong, S.H., and Lee, K. 2016. Clonal dissemination of Pseudomonas aeruginosa sequence type 235 carrying blaIMP-6 and emergence of blaGES-24 and blaIMP-10 on novel genomic islands PAGI-15 and -16 in Korea. Antimicrob. Agents Chemother. 60, 7216–7223.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hrabák, J., Študentová, V., Adámková, V., Šemberová, L., Kabelíková, P., Hedlová, D., Curdová, M., Zemlickova, H., and Papagiannitsis, C.C. 2015. Report on a transborder spread of carbapenemaseproducing bacteria by a patient injured during Euromaidan, Ukraine. New Microbes New Infect. 8, 28–30.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Huang, H., Yang, Z.L., Wu, X.M., Wang, Y., Liu, Y.J., Luo, H., Lv, X., Gan, Y.R., Song, S.D., and Gao, F. 2012. Complete genome sequence of Acinetobacter baumannii MDR-TJ and insights into its mechanism of antibiotic resistance. J. Antimicrob. Chemother. 67, 2825–2832.CrossRefPubMedGoogle Scholar
  42. Jeon, H., Kim, S., Kim, M.H., Kim, S.Y., Nam, D., Park, S.C., Park, S.H., Bae, H., Lee, H.J., Cho, J.H., et al. 2018. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolates from a Korean hospital that carry blaOXA-23. Infect. Genet. Evol. 58, 232–236.CrossRefPubMedGoogle Scholar
  43. Johnson, J.R., Johnston, B., Clabots, C., Kuskowski, M.A., and Castanheira, M. 2010. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin. Infect. Dis. 51, 286–294.CrossRefPubMedGoogle Scholar
  44. Johnson, J.R., Porter, S.B., Zhanel, G., Kuskowski, M.A., and Denamur, E. 2012. Virulence of Escherichia coli clinical isolates in a murine sepsis model in relation to sequence type ST131 status, fluoroquinolone resistance, and virulence genotype. Infect. Immun. 80, 1554–1562.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kaase, M., Schimanski, S., Schiller, R., Beyreiβ, B., Thürmer, A., Steinmann, J., Kempf, V.A., Hess, C., Sobottka, I., Fenner, I., et al. 2016. Multicentre investigation of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in German hospitals. Int. J. Med. Microbiol. 306, 415–420.CrossRefPubMedGoogle Scholar
  46. Karah, N., Sundsfjord, A., Towner, K., and Samuelsen, Ø. 2012. Insights into the global molecular epidemiology of carbapenem non-susceptible clones of Acinetobacter baumannii. Drug Resist. Updat. 15, 237–247.CrossRefPubMedGoogle Scholar
  47. Kim, M.J., Bae, I.K., Jeong, S.H., Kim, S.H., Song, J.H., Choi, J.Y., Yoon, S.S., Thamlikitkul, V., Hsueh, P.R., Yasin, R.M., et al. 2013a. Dissemination of metallo-β-lactamase-producing Pseudomonas aeruginosa of sequence type 235 in Asian countries. J. Antimicrob. Chemother. 68, 2820–2824.CrossRefPubMedGoogle Scholar
  48. Kim, D.H., Choi, J.Y., Kim, H.W., Kim, S.H., Chung, D.R., Peck, K.R., Thamlikitkul, V., So, T.M., Yasin, R.M., Hsueh, P.R., et al. 2013b. Spread of carbapenem-resistant Acinetobacter baumannii global clone 2 in Asia and AbaR-type resistance islands. Antimicrob. Agents Chemother. 57, 5239–5246.CrossRefGoogle Scholar
  49. Kim, D.H., Jung, S.I., Kwon, K.T., and Ko, K.S. 2017a. Occurrence of diverse AbGRI1-type genomic islands in Acinetobacter baumannii global clone 2 isolates from South Korea. Antimicrob. Agents Chemother. 61, e01972–16.PubMedPubMedCentralGoogle Scholar
  50. Kim, B., Kim, J., Seo, M.R., Wie, S.H., Cho, Y.K., Lim, S.K., Lee, J.S., Kwon, K.T., Lee, H., Cheong, H.J., et al. 2013c. Clinical characteristics of community-acquired acute pyelonephritis caused by ESBL-producing pathogens in South Korea. Infection 41, 603–612.CrossRefPubMedGoogle Scholar
  51. Kim, S.Y., Park, Y.J., Johnson, J.R., Yu, J.K., Kim, Y.K., and Kim, Y.S. 2016. Prevalence and characteristics of Escherichia coli sequence type 131 and its H30 and H30Rx subclones: a multicenter study from Korea. Diagn. Microbiol. Infect. Dis. 84, 97–101.CrossRefPubMedGoogle Scholar
  52. Kim, D.H., Park, Y.K., and Ko, K.S. 2012. Variations of AbaR4-type resistance islands in Acinetobacter baumannii isolates from South Korea. Antimicrob. Agents Chemother. 56, 4544–4547.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kim, Y., Bae, I.K., Jeong, S.H., Yong, D., and Lee, K. 2015. In vivo selection of pan-drug resistant Acinetobacter baumannii during antibiotic treatment. Yonsei Med. J. 56, 928–934.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kim, Y., Oh, T., Nam, Y.S., Cho, S.Y., and Lee, H.J. 2017b. Prevalence of ST131 and ST1193 among bloodstream isolates of Escherichia coli not susceptible to ciprofloxacin in a tertiary care university hospital in Korea, 2013–2014. Clin. Lab. 63, 1541–1543.PubMedGoogle Scholar
  55. Ko, K.S., Choi, Y., and Lee, J.Y. 2017. Old drug, new findings: Colistin resistance and dependence of Acinetobacter baumannii. Precis. Future Med. 1, 159–167.CrossRefGoogle Scholar
  56. Ko, K.S., Lee, J.Y., Baek, J.Y., Suh, J.Y., Lee, M.Y., Choi, J.Y., Yeom, J.S., Kim, Y.S., Jung, S.I., Shin, S.Y., et al. 2010. Predominance of an ST11 ESBL-producing Klebsiella pneumoniae clone causing bacteraemia and urinary tract infections in Korea. J. Med. Microbiol. 59, 822–828.CrossRefPubMedGoogle Scholar
  57. Kontopoulou, K., Protonotariou, E., Vasilakos, K., Kriti, M., Koteli, A., Antoniadou, E., and Sofianou, D. 2010. Hospital outbreak caused by Klebsiella pneumoniae producing KPC-2 beta-lactamase resistant to colistin. J. Hosp. Infect. 76, 70–73.CrossRefPubMedGoogle Scholar
  58. Kudinha, T., Johnson, J.R., Andrew, S.D., Kong, F., Anderson, P., and Gilbert, G.L. 2013. Distribution of phylogenetic groups, sequence type ST131, and virulence-associated traits among Escherichia coli isolates from men with pyelonephritis or cystitis and healthy controls. Clin. Microbiol. Infect. 19, E173–E180.CrossRefPubMedGoogle Scholar
  59. Lavigne, J.P., Vergunst, A.C., Goret, L., Sotto, A., Combescure, C., Blanco, J., O’Callaghan, D., and Nicolas-Chanoine, M.H. 2012. Virulence potential and genomic mapping of the worldwide clone Escherichia coli ST131. PLoS One 7, e34294.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lee, Y., Bae, I.K., Kim, J., Jeong, S.H., and Lee, K. 2012. Dissemination of ceftazidime-resistant Acinetobacter baumannii clonal complex 92 in Korea. J. Appl. Microbiol. 112, 1207–1211.CrossRefPubMedGoogle Scholar
  61. Lee, M.Y., Choi, H.J., Choi, J.Y., Song, M., Song, Y., Kim, S.W., Chang, H.H., Jung, S.I., Kim, Y.S., Ki, H.K., et al. 2010. Dissemination of ST131 and ST393 community-onset, ciprofloxacin-resistant Escherichia coli clones causing urinary tract infections in Korea. J. Infect. 60, 146–153.CrossRefPubMedGoogle Scholar
  62. Lee, M.Y., Ko, K.S., Kang, C.I., Chung, D.R., Peck, K.R., and Song, J.H. 2011a. High prevalence of CTX-M-15-producing Klebsiella pneumoniae isolates in Asian countries: diverse clones and clonal dissemination. Int. J. Antimicrob. Agents 38, 160–163.CrossRefPubMedGoogle Scholar
  63. Lee, Y., Lee, J., Jeong, S.H., Lee, J., Bae, I.K., and Lee, K. 2011b. Carbapenem- non-susceptible Acinetobacter baumannii of sequence type 92 or its single-locus variants with a G428T substitution in zone 2 of the rpoB gene. J. Antimicrob. Chemother. 66, 66–72.CrossRefPubMedGoogle Scholar
  64. Lee, J.Y., Peck, K.R., and Ko, K.S. 2013. Selective advantages of two major clones of carbapenem-resistant Pseudomonas aeruginosa isolates (CC235 and CC641) from Korea: Antimicrobial resistance, virulence and biofilm-forming activity. J. Med. Microbiol. 62, 1015–1024.CrossRefPubMedGoogle Scholar
  65. Liakopoulos, A., Mavroidi, A., Katsifas, E.A., Theodosiou, A., Karagouni, A.D., Miriagou, V., and Petinaki, E. 2013. Carbapenemaseproducing Pseudomonas aeruginosa from central Greece: Molecular epidemiology and genetic analysis of class I integrons. BMC Infect. Dis. 13, 505.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Liew, S.M., Rajasekaram, G., Puthucheary, S.D., and Chua, K.H. 2018. Detection of VIM-2-, IMP-1- and NDM-1-producing multidrug- resistant Pseudomonas aeruginosa in Malaysia. J. Glob. Antimicrob. Resist. 13, 271–273.CrossRefPubMedGoogle Scholar
  67. Liu, Y., Wan, L.G., Deng, Q., Cao, X.W., Yu, Y., and Xu, Q.F. 2015. First description of NDM-1-, KPC-2-, VIM-2- and IMP-4-producing Klebsiella pneumoniae strains in a single Chinese teaching hospital. Epidemiol. Infect. 143, 376–384.CrossRefPubMedGoogle Scholar
  68. Livermore, D.M. 2012. Current epidemiology and growing resistance of Gram-negative pathogens. Korean J. Intern. Med. 27, 128–142.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ma, L., Wang, J.T., Wu, T.L., Siu, L.K., Chuang, Y.C., Lin, J.C., Lu, M.C., and Lu, P.L. 2015. Emergence of OXA-48-producing Klebsiella pneumoniae in Taiwan. PLoS One 10, e0139152.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Maatallah, M., Cheriaa, J., Backhrouf, A., Iversen, A., Grundmann, H., Do, T., Lanotte, P., Mastouri, M., Elghmati, M.S., Rojo, F., et al. 2011. Population structure of Pseudomonas aeruginosa from five Mediterranean countries: Evidence for frequent recombination and epidemic occurrence of CC235. PLoS One 6, e25617.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Mathers, A.J., Peirano, G., and Pitout, J.D. 2015. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 28, 565–591.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Mikucionyte, G., Zamorano, L., Vitkauskiene, A., López-Causapé, C., Juan, C., Mulet, X., and Oliver, A. 2016. Nosocomial dissemination of VIM-2-producing ST235 Pseudomonas aeruginosa in Lithuania. Eur. J. Clin. Microbiol. Infect. Dis. 35, 195–200.CrossRefPubMedGoogle Scholar
  73. Miyoshi-Akiyama, T., Tada, T., Ohmagari, N., Hung, N.V., Tharavichitkul, P., Pokhrel, B.M., Gniadkowski, M., Shimojima, M., and Kirikae, T. 2017. Emergence and spread of epidemic multidrug- resistant Pseudomonas aeruginosa. Genome Biol. Evol. 9, 3238–3245.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Mora, A., Dahbi, G., López, C., Mamani, R., Marzoa, J., Dion, S., Picard, B., Blanco, M., Alonso, M.P., Denamur, E., et al. 2014. Virulence patterns in a murine sepsis model of ST131 Escherichia coli clinical isolates belonging to serotypes O25b:H4 and O16:H5 are associated to specific virotypes. PLoS One 9, e87025.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Mugnier, P.D., Poirel, L., Naas, T., and Nordmann, P. 2010. Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg. Infect. Dis. 16, 35–40.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Netikul, T., Sidjabat, H.E., Paterson, D.L., Kamolvit, W., Tantisiriwat, W., Steen, J.A., and Kiratisin, P. 2014. Characterization of an IncN2-type blaNDM-1-carrying plasmid in Escherichia coli ST131 and Klebsiella pneumoniae ST11 and ST15 isolates in Thailand. J. Antimicrob. Chemother. 69, 3161–3163.CrossRefPubMedGoogle Scholar
  77. Nicholas-Chanoine, M.H., Blanco, J., Leflon-Guibout, V., Demarty, R., Alonso, M.P., Canica, M.M., Park, Y.J., Lavigne, J.P., Pitout, J., and Johnson, J.R. 2008. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother. 61, 273–281.CrossRefGoogle Scholar
  78. Nigro, S.J. and Hall, R.M. 2015. Distribution of the blaOXA-23-containing transposons Tn2006 and Tn2008 in Australian carbapenem- resistant Acinetobacter baumannii isolates. J. Antimicrob. Chemother. 70, 2409–2411.CrossRefPubMedGoogle Scholar
  79. Nigro, S.J. and Hall, R.M. 2016. Structure and context of Acinetobacter transposons carrying the oxa23 carbapenemase gene. J. Antimicrob. Chemother. 71, 1135–1147.CrossRefPubMedGoogle Scholar
  80. Normark, B.H. and Normark, S. 2002. Evolution and spread of antibiotic resistance. J. Intern. Med. 252, 91–106.CrossRefPubMedGoogle Scholar
  81. Park, S., Kim, H.S., Lee, K.M., Yoo, J.S., Yoo, J.I., Lee, Y.S., and Chung, G.T. 2013. Molecular and epidemiological characterization of carbapenem-resistant Acinetobacter baumannii in non-tertiary Korean hospitals. Yonsei Med. J. 54, 177–182.CrossRefPubMedGoogle Scholar
  82. Park, S.H., Byun, J.H., Choi, S.M., Lee, D.G., Kim, S.H., Kwon, J.C., Park, C., Choi, J.H., and Yoo, J.H. 2012a. Molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli in the community and hospital in Korea: emergence of ST131 producing CTX-M-15. BMC Infect. Dis. 12, 149.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Park, Y.K., Choi, J.Y., Jung, S.I., Park, K.H., Lee, H., Jung, D.S., Heo, S.T., Kim, S.W., Chang, H.H., Cheong, H.S., et al. 2009a. Two distinct clones of carbapenem-resistant Acinetobacter baumannii isolates from Korean hospitals. Diagn. Microbiol. Infect. Dis. 64, 389–395.CrossRefPubMedGoogle Scholar
  84. Park, Y.K., Jung, S.I., Park, K.H., Kim, D.H., Choi, J.Y., Kim, S.H., and Ko, K.S. 2012b. Changes in antimicrobial susceptibility and major clones of Acinetobacter calcoaceticus-baumannii complex isolates from a single hospital in Korea over 7 years. J. Med. Microbiol. 61, 71–79.CrossRefPubMedGoogle Scholar
  85. Park, Y.K., Lee, G.H., Baek, J.Y., Chung, D.R., Peck, K.R., Song, J.H., and Ko, K.S. 2010. A single clone of Acinetobacter baumannii, ST22, is responsible for high antimicrobial resistance rates of Acinetobacter spp. isolates that cause bacteremia and urinary tract infections in Korea. Microb. Drug Resist. 16, 143–149.PubMedGoogle Scholar
  86. Park, Y.K., Peck, K.R., Cheong, H.S., Chung, D.R., Song, J.H., and Ko, K.S. 2009b. Extreme drug resistance in Acinetobacter baumannii infections in intensive care units, South Korea. Emerg. Infect. Dis. 15, 1325–1327.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Park, J.Y., Yun, K.W., Choi, E.H., and Lee, H.J. 2018. Prevalence and characteristics of sequence type 131 Escherichia coli isolated from children with bacteremia in 2000–2015. Microb. Drug Resist. (In press).Google Scholar
  88. Peleg, A.Y., Seifert, H., and Paterson, D.L. 2008. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538–584.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Pfennigwerth, N., Geis, G., Gatermann, S.G., and Kaase, M. 2015. Description of IMP-31, a novel metallo-β-lactamase found in an ST235 Pseudomonas aeruginosa strain in Western Germany. J. Antimicrob. Chemother. 70, 1793–1780.Google Scholar
  90. Pitout, J.D., Nordmann, P., and Poirel, L. 2015. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob. Agents Chemother. 59, 5873–5884.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Price, L.B., Johnson, J.R., Aziz, M., Clabots, C., Johnston, B., Tchesnokova, V., Nordstrom, L., Billig, M., Chattopadhyay, S., Stegger, M., et al. 2013. The epidemic of extended-spectrum-β-lactamaseproducing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. mBio 4, 00377–13.Google Scholar
  92. Qi, Y., Wei, Z., Ji, S., Du, X., Shen, P., and Yu, Y. 2011. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J. Antimicrob. Chemother. 66, 307–312.CrossRefPubMedGoogle Scholar
  93. Recio, R., Villa, J., Viedma, E., Orellana, M.Á., Lora-Tamayo, J., and Chaves, F. 2018. Bacteraemia due to extensively drug-resistant Pseudomonas aeruginosa sequence type 235 high-risk clone: Facing the perfect storm. Int. J. Antimicrob. Agents 52, 172–179.CrossRefPubMedGoogle Scholar
  94. Rhee, J.Y., Park, Y.K., Shin, J., Choi, J.Y., Lee, M.Y., Peck, K.R., Song, J.H., and Ko, K.S. 2010. KPC-producing extreme drugresistant Klebsiella pneumoniae isolate from a patient with diabetes mellitus and chronic renal failure on hemodialysis in South Korea. Antimicrob. Agents Chemother. 54, 2278–2279.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Roh, K.H., Lee, C.K., Sohn, J.W., Song, W., Yong, D., and Lee, K. 2011. Isolation of a Klebsiella pneumoniae isolate of sequence type 258 producing KPC-2 carbapenemase in Korea. Korean J. Lab. Med. 31, 298–301.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Rojas, L.J., Hujer, A.M., Rudin, S.D., Wright, M.S., Domitrovic, T.N., Marshall, S.H., Hujer, K.M., Richter, S.S., Cober, E., Perez, F., et al. 2017. NDM-5 and OXA-181 beta-lactamases, a significant threat continues to spread in the Americas. Antimicrob. Agents Chemother. 61, e00454–17.PubMedPubMedCentralGoogle Scholar
  97. Saito, R., Takahashi, R., Sawabe, E., Koyano, S., Takahashi, Y., Shima, M., Ushizawa, H., Fujie, T., Tosaka, N., Kato, Y., et al. 2014. First report of KPC-2 carbapenemase-producing Klebsiella pneumoniae in Japan. Antimicrob. Agents Chemother. 58, 2961–2963.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Samuelsen, O., Toleman, M.A., Sundsfjord, A., Rydberg, J., Leegaard, T.M., Walder, M., Lia, A., Ranheim, T.E., Rajendra, Y., Hermansen, N.O., et al. 2010. Molecular epidemiology of metallo-betalactamase- producing Pseudomonas aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion. Antimicrob. Agents Chemother. 54, 346–352.CrossRefPubMedGoogle Scholar
  99. Seok, Y., Bae, I.K., Jeong, S.H., Kim, S.H., Lee, H., and Lee, K. 2011. Dissemination of IMP-6 metallo-β-lactamase-producing Pseudomonas aeruginosa sequence type 235 in Korea. J. Antimicrob. Chemother. 66, 2791–2796.CrossRefPubMedGoogle Scholar
  100. Shin, J., Baek, J.Y., Cho, S.Y., Huh, H.J., Lee, N.Y., Song, J.H., Chung, D.R., and Ko, K.S. 2016. blaNDM-5-bearing IncFII-type plasmids of Klebsiella pneumoniae sequence type 147 transmitted by crossborder transfer of a patient. Antimicrob. Agents Chemother. 60, 1932–1934.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Shin, J., Kim, D.H., and Ko, K.S. 2011. Comparison of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J. Infect. 63, 39–47.CrossRefPubMedGoogle Scholar
  102. Shin, B. and Park, W. 2017. Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy. J. Microbiol. 55, 837–849.CrossRefPubMedGoogle Scholar
  103. Shoma, S., Kamruzzaman, M., Ginn, A.N., Iredell, J.R., and Partridge, S.R. 2014. Characterization of multidrug-resistant Klebsiella pneumoniae from Australia carrying blaNDM-1. Diagn. Microbiol. Infect. Dis. 78, 93–97.CrossRefPubMedGoogle Scholar
  104. Solgi, H., Badmasti, F., Giske, C.G., Aghamohammad, S., and Shahcheraghi, F. 2018. Molecular epidemiology of NDM-1- and OXA- 48-producing Klebsiella pneumoniae in an Iranian hospital: Clonal dissemination of ST11 and ST893. J. Antimicrob. Chemother. 73, 1517–1524.CrossRefPubMedGoogle Scholar
  105. Stewart, L., Ford, A., Sangal, V., Jeukens, J., Boyle, B., Kukavica-Ibrulj, I., Caim, S., Crossman, L., Hoskisson, P.A., Levesque, R., et al. 2014. Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny. Pathog. Dis. 71, 20–55.CrossRefPubMedGoogle Scholar
  106. Stoesser, N., Sheppard, A.E., Pankhurst, L., De Maio, N., Moore, C.E., Sebra, R., Turner, P., Anson, L.W., Kasarskis, A., Batty, E.M., et al. 2016. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio 7, e02162–15.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Tada, T., Nhung, P.H., Miyoshi-Akiyama, T., Shimada, K., Tsuchiya, M., Phuong, D.M., Anh, N.Q., Ohmagari, N., and Kirikae, T. 2016. Multidrug-resistant sequence type 235 Pseudomonas aeruginosa clinical isolates producing IMP-26 with increased carbapenemhydrolyzing activities in Vietnam. Antimicrob. Agents Chemother. 60, 6853–6858.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Takeuchi, D., Akeda, Y., Yoshida, H., Hagiya, H., Yamamoto, N., Nishi, I., Yoshioka, N., Sugawara, Y., Sakamoto, N., Shanmugakani, R.K., et al. 2018. Genomic reorganization by IS26 in a blaNDM-5-bearing FII plasmid of Klebsiella pneumoniae isolated from a patient in Japan. J. Med. Microbiol. (In press).Google Scholar
  109. Todorova, B., Sabtcheva, S., Ivanov, I.N., Lesseva, M., Chalashkanov, T., Ioneva, M., Bachvarova, A., Dobreva, E., and Kantardjiev, T. 2016. First clinical cases of NDM-1-producing Klebsiella pneumoniae from two hospitals in Bulgaria. J. Infect. Chemother. 22, 837–840.CrossRefPubMedGoogle Scholar
  110. Toth, A., Damjanova, I., Puskas, E., Jánvári, L., Farkas, M., Dobák, A., Böröcz, K., and Pászti, J. 2010. Emergence of a colistin-resistant KPC-2-producing Klebsiella pneumoniae ST258 clone in Hungary. Eur. J. Clin. Microbiol. Infect. Dis. 29, 765–769.CrossRefPubMedGoogle Scholar
  111. Treepong, P., Kos, V.N., Guyeux, C., Blanc, D.S., Bertrand, X., Valot, B., and Hocquet, D. 2018. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin. Microbiol. Infect. 24, 258–266.CrossRefPubMedGoogle Scholar
  112. Van Dessel, H., Dijkshoorn, L., van der Reijden, T., Bakker, N., Baauw, A., van den Broek, P., Verhoef, J., and Brisse, S. 2004. Identification of a new geographically widespread multiresistant Acinetobacter baumannii clone from European hospitals. Res. Microbiol. 155, 105–112.CrossRefPubMedGoogle Scholar
  113. Vimont, S., Boyd, A., Bleibtreu, A., Bens, M., Goujon, J.M., Garry, L., Clermont, O., Denamur, E., Arlet, G., and Vandewalle, A. 2012. The CTX-M-15-producing Escherichia coli clone O25b: H4-ST131 has high intestine colonization and urinary tract infection abilities. PLoS One 7, e46547.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Voulgari, E., Gartzonika, C., Vrioni, G., Politi, L., Priavali, E., Levidiotou- Stefanou, S., and Tsakris, A. 2014. The Balkan region: NDM-1-producing Klebsiella pneumoniae ST11 clonal strain causing outbreaks in Greece. J. Antimicrob. Chemother. 69, 2091–2097.CrossRefPubMedGoogle Scholar
  115. Wang, X., Qiao, F., Yu, R., Gao, Y., and Zong, Z. 2013. Clonal diversity of Acinetobacter baumannii clinical isolates revealed by a snapshot study. BMC Microbiol. 13, 234.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Wi, Y.M., Choi, J.Y., Lee, J.Y., Kang, C.I., Chung, D.R., Peck, K.R., Song, J.H., and Ko, K.S. 2017. Emergence of colistin resistance in Pseudomonas aeruginosa ST235 clone in South Korea. Int. J. Antimicrob. Agents 49, 767–769.CrossRefPubMedGoogle Scholar
  117. Willyard, C. 2017. The drug-resistant bacteria that pose the greatest health threats. Nature 543, 15.CrossRefPubMedGoogle Scholar
  118. Woodford, N., Carattoli, A., Karisik, E., Underwood, A., Ellington, M.J., and Livermore, D.M. 2009. Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4-ST131 clone. Antimicrob. Agents Chemother. 53, 4472–4482.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Woodford, N., Tierno, P.M. Jr., Young, K., Tysall, L., Palepou, M.F., Ward, E., Painter, R.E., Suber, D.F., Shungu, D., Silver, L.L., et al. 2004. Outbreak of Klebsiella pneumoniae producing a new carbapenem- hydrolyzing class A beta-lactamase, KPC-3, in a New York Medical Center. Antimicrob. Agents Chemother. 48, 4793–4799.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Woodford, N., Turton, J.F., and Livermore, D.M. 2011. Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev. 35, 736–755.CrossRefPubMedGoogle Scholar
  121. Ying, C., Li, Y., Wang, Y., Zheng, B., and Yang, C. 2015. Investigation of the molecular epidemiology of Acinetobacter baumannii isolated from patients and environmental contamination. J. Antibiot. (Tokyo) 68, 562–567.CrossRefGoogle Scholar
  122. Yoo, J.S., Kim, H.M., Yoo, J.I., Yang, J.W., Kim, H.S., Chung, G.T., and Lee, Y.S. 2013. Detection of clonal KPC-2-producing Klebsiella pneumoniae ST258 in Korea during nationwide surveillance in 2011. J. Med. Microbiol. 62, 1338–1342.CrossRefPubMedGoogle Scholar
  123. Yoo, J.S., Yang, J.W., Kim, H.M., Byeon, J., Kim, H.S., Yoo, J.I., Chung, G.T., and Lee, Y.S. 2012. Dissemination of genetically related IMP- 6-producing multidrug-resistant Pseudomonas aeruginosa ST235 in South Korea. Int. J. Antimicrob. Agents 39, 300–304.CrossRefPubMedGoogle Scholar
  124. Yoon, E.J., Kim, J.O., Yang, J.W., Kim, H.S., Lee, K.J., Jeong, S.H., Lee, H., and Lee, K. 2017. The blaOXA-23-associated transposons in the genome of Acinetobacter spp. represent an epidemiological situation of the species encountering carbapenems. J. Antimicrob. Chemother. 72, 2708–2714.PubMedGoogle Scholar
  125. Yoon, E.J., Yang, J.W., Kim, J.O., Lee, H., Lee, K.J., and Jeong, S.H. 2018. Carbapenemase-producing Enterobacteriaceae in South Korea: A report from the National Laboratory Surveillance System. Future Microbiol. 13, 771–783.CrossRefPubMedGoogle Scholar
  126. Zowawi, H.M., Sartor, A.L., Sidjabat, H.E., Balkhy, H.H., Walsh, T.R., Al Johani, S.M., AlJindan, R.Y., Alfaresi, M., Ibrahim, E., Al-Jardani, A., et al. 2015. Molecular epidemiology of carbapenem- resistant Acinetobacter baumannii isolates in the Gulf Cooperation Council States: dominance of OXA-23-type producers. J. Clin. Microbiol. 53, 896–903.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonRepublic of Korea

Personalised recommendations