Advertisement

Flavobacterium aquariorum sp. nov., isolated from freshwater of the North Han River

  • Yochan Joung
  • Hye-Jin Jang
  • Jaeho Song
  • Jang-Cheon ChoEmail author
Article
  • 4 Downloads

Abstract

A non-motile, yellow-pigmented bacterial strain, designated IMCC34762T, was isolated from a freshwater sample collected from Lake Cheongpyeong in Korea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain IMCC-34762T formed a lineage within the genus Flavobacterium and was most closely related to F. pectinovorum DSM 6368T (98.3% sequence similarity), followed by F. piscis CCUG 60099T (98.3%), F. branchiicola 59B-3-09T (98.2%), and F. saccharophilum DSM 1811T (98.2%). The average nucleotide identity and the genome-to-genome distance between strain IMCC34762T and the closely related strains were 61–62% and 26–27%, respectively, indicating that IMCC34762T is a novel species of the genus Flavobacterium. The major fatty acids (> 5%) of strain IMCC34762T were summed feature 3 (C16:1ω6c and/or C16:1ω7c, 17.3%), iso-C15:0 (15.0%), iso-C15:0 G (9.0%), C15:0ω6c (7.4%), iso-C15:0 (7.4%), and iso-C16:0 (5.3%). The major respiratory quinone and polyamine were MK-6 and sym-homospermidine, respectively. The major polar lipids were phosphatidylethanolamine, an unidentified aminophospholipid, and an unidentified lipid. The DNA G + C content of strain IMCC34762T was 34.4 mol%. Based on the taxonomic data presented in this study, strain IMCC-34762T represents a novel species within the genus Flavobacterium, for which the name Flavobacterium aquariorum, sp. nov. is proposed. The type strain is IMCC34762T (= KACC 19725T = NBRC 113425T).

Keywords

Flavobacterium F. aquariosum Han River taxonomy genome bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8436_MOESM1_ESM.pdf (430 kb)
Supplementary material, approximately 430 KB.

References

  1. Auch, A.F., von Jan, M., Klenk, H.P., and Goker, M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomic Sci. 2, 117–134.CrossRefGoogle Scholar
  2. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477.CrossRefGoogle Scholar
  3. Bergey, D.H., Harrison, F.C., Breed, R.S., Hammer, B.W., and Huntoon, F.M. 1923. Genus II. Flavobacterium gen. nov., pp. 97–117. In Bergey’s manual of determinative bacteriology, Williams & Wilkins, Baltimore, MD, USA.Google Scholar
  4. Bernardet, J.F. and Bowman, J.P. 2006. The genus Flavobacterium, pp. 481–531. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackedbrandt, E. (eds.), The prokaryotes: the biology of bacteria, 3rd ed, Springer, New York, USA.CrossRefGoogle Scholar
  5. Bernardet, J.F., Nakagawa, Y., and Holmes, B. 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 52, 1049–1070.Google Scholar
  6. Bernardet, J.F., Segers, P., Vancanneyt, M., Berthe, F., Kersters, K., and Vandamme, P. 1996. Cutting a gordian knot: Emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int. J. Syst. Evol. Microbiol. 46, 128–148.Google Scholar
  7. Bu, J.H. and Cha, C.J. 2018. Flavobacterium foetidum sp. nov., isolated from ginseng soil. Int. J. Syst. Evol. Microbiol. 68, 616–622.CrossRefGoogle Scholar
  8. Cai, H., Zeng, Y., Wang, Y., Cui, H., and Jiang, H. 2018. Flavobacterium cyanobacteriorum sp. nov., isolated from cyanobacterial aggregates in a eutrophic lake. Int. J. Syst. Evol. Microbiol. 68, 1279–1284.CrossRefGoogle Scholar
  9. Chaudhary, D.K. and Kim, J. 2017. Flavobacterium olei sp. nov., a novel psychrotolerant bacterium isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 67, 2211–2218.CrossRefGoogle Scholar
  10. Chaudhary, D.K. and Kim, J. 2018. Flavobacterium naphthae sp. nov., isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 68, 305–309.CrossRefGoogle Scholar
  11. Dahal, R.H., Chaudhary, D.K., and Kim, J. 2017. Flavobacterium flaviflagrans sp. nov., a bacterium of the family Flavobacteriaceae isolated from forest soil. Int. J. Syst. Evol. Microbiol. 67, 2653–2659.CrossRefGoogle Scholar
  12. Dahal, R.H. and Kim, J. 2018. Flavobacterium ureilyticum sp. nov., a novel urea hydrolysing bacterium isolated from stream bank soil. Antonie van Leeuwenhoek 111, 2131–2139.CrossRefGoogle Scholar
  13. Dong, K., Chen, F., Du, Y., and Wang, G. 2013. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int. J. Syst. Evol. Microbiol. 63, 886–892.CrossRefGoogle Scholar
  14. Ekwe, A.P. and Kim, S.B. 2018. Flavobacterium commune sp. nov., isolated from freshwater and emended description of Flavobacterium seoulense. Int. J. Syst. Evol. Microbiol. 68, 93–98.CrossRefGoogle Scholar
  15. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefGoogle Scholar
  16. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefGoogle Scholar
  17. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  18. Fu, Y., Tang, X., Lai, Q., Zhang, C., Zhong, H., Li, W., Liu, Y., Chen, L., Sun, F., and Shao, Z. 2011. Flavobacterium beibuense sp. nov., isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 61, 205–209.CrossRefGoogle Scholar
  19. Fujii, D., Nagai, F., Watanabe, Y., and Shirasawa, Y. 2014. Flavobacterium longum sp. nov. and Flavobacterium urocaniciphilum sp. nov., isolated from a wastewater treatment plant, and emended descriptions of Flavobacterium caeni and Flavobacterium terrigena. Int. J. Syst. Evol. Microbiol. 64, 1488–1494.CrossRefGoogle Scholar
  20. Jeon, Y.S., Lee, K., Park, S.C., Kim, B.S., Cho, Y.J., Ha, S.M., and Chun, J. 2014. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. Int. J. Syst. Evol. Microbiol. 64, 689–691.CrossRefGoogle Scholar
  21. Joung, Y., Kang, H., Kim, H., Kim, T.S., Han, J.H., Kim, S.B., Ahn, T.S., and Joh, K. 2016. Flavobacterium paronense sp. nov., isolated from freshwater of an artificial vegetated island. Int. J. Syst. Evol. Microbiol. 66, 365–370.CrossRefGoogle Scholar
  22. Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules, pp. 21–132. In Munro, H.N. (ed.), Mammalian protein metabolism. vol 3, Academic Press, New York, USA.CrossRefGoogle Scholar
  23. Kampfer, P., Busse, H.J., McInroy, J.A., and Glaeser, S.P. 2017. Flavobacterium gossypii sp. nov. isolated from the root tissue of field-grown cotton. Int. J. Syst. Evol. Microbiol. 67, 3345–3350.CrossRefGoogle Scholar
  24. Kang, J.Y., Chun, J., and Jahng, K.Y. 2013. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int. J. Syst. Evol. Microbiol. 63, 1633–1638.CrossRefGoogle Scholar
  25. Khianngam, S., Akaracharanya, A., Lee, J.S., Lee, K.C., Kim, K.W., and Tanasupawat, S. 2014. Flavobacterium arsenitoxidans sp. nov., an arsenite-oxidizing bacterium from Thai soil. Antonie van Leeuwenhoek 106, 1239–1246.CrossRefGoogle Scholar
  26. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.CrossRefGoogle Scholar
  27. Kim, M., Oh, H.S., Park, S.C., and Chun, J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64, 346–351.CrossRefGoogle Scholar
  28. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefGoogle Scholar
  29. Lee, Y. and Jeon, C.O. 2018. Flavobacterium alvei sp. nov., isolated from a freshwater river. Int. J. Syst. Evol. Microbiol. 68, 1919–1924.CrossRefGoogle Scholar
  30. Liu, H., Lu, P., Jin, L., and Zhu, G. 2017. Flavobacterium luticocti sp. nov., isolated from wastewater. Int. J. Syst. Evol. Microbiol. 67, 369–373.CrossRefGoogle Scholar
  31. Liu, Q., Siddiqi, M.Z., Liu, Q., Huq, M.A., Lee, S.Y., Choi, K.D., and Im, W.T. 2018. Flavobacterium hankyongi sp. nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 68, 1732–1736.CrossRefGoogle Scholar
  32. Madhaiyan, M., Poonguzhali, S., Lee, J.S., Lee, K.C., and Sundaram, S. 2009. Flavobacterium glycines sp. nov., a novel facultative methylotrophic species isolated from the rhizosphere of soybean. Int. J. Syst. Evol. Microbiol. 60, 2187–2192.CrossRefGoogle Scholar
  33. Meier-Kolthoff, J.P., Klenk, H.P., and Goker, M. 2014. Taxonomic use of DNA G + C content and DNA-DNA hybridization in the genomic age. Int. J. Syst. Evol. Microbiol. 64, 352–356.CrossRefGoogle Scholar
  34. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  35. Moya, G., Yan, Z.F., Trinh, H., Won, K.H., Yang, J.E., Kook, M.C., and Yi, T.H. 2017. Flavobacterium hibisci sp. nov., isolated from the rhizosphere of Hibiscus syriacus L. Int. J. Syst. Evol. Microbiol. 67, 537–542.CrossRefGoogle Scholar
  36. Nogi, Y., Soda, K., and Oikawa, T. 2005. Flavobacterium frigidimaris sp. nov., isolated from Antarctic seawater. Syst. Appl. Microbiol. 28, 310–315.CrossRefGoogle Scholar
  37. Park, M., Nam, G.G., Kim, S., Jeon, H.T., Joung, Y., and Cho, J.C. 2017. Flavobacterium chuncheonense sp. nov. and Flavobacterium luteum sp. nov., isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol. 67, 4409–4415.CrossRefGoogle Scholar
  38. Park, M., Song, J., Nam, G.G., Kim, S., Joung, Y., and Cho, J.C. 2018. Flavobacterium lacicola sp. nov., isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol. 68, 1565–1570.CrossRefGoogle Scholar
  39. Ren, Q., Yu, M., Li, Y., Zhang, Y., Shi, X., Wu, Y., Su, Y., Wang, Y., Wang, X., and Zhang, X.H. 2018. Flavobacterium ovatum sp. nov., a marine bacterium isolated from an Antarctic intertidal sandy beach. Int. J. Syst. Evol. Microbiol. 68, 795–800.CrossRefGoogle Scholar
  40. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.Google Scholar
  41. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.Google Scholar
  42. Scherer, P. and Kneifel, H. 1983. Distribution of polyamines in methanogenic bacteria. J. Bacteriol. 154, 1315–1322.Google Scholar
  43. Song, L., Liu, H., Huang, Y., Dai, X., and Zhou, Y. 2013. Flavobacterium marinum sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 63, 3551–3555.CrossRefGoogle Scholar
  44. Stackebrandt, E., Pauker, O., Steiner, U., Schumann, P., Straubler, B., Heibei, S., and Lang, E. 2007. Taxonomic characterization of members of the genus Corallococcus: molecular divergence versus phenotypic coherency. Syst. Appl. Microbiol. 30, 109–118.CrossRefGoogle Scholar
  45. Yang, F., Liu, H.M., Zhang, R., Chen, D.B., Wang, X., Yan, X., Hong, Q., and Li, S.P. 2015. Flavobacterium shanxiense sp. nov., isolated from soil. Curr. Microbiol. 70, 835–839.CrossRefGoogle Scholar
  46. Yi, H. and Chun, J. 2006. Flavobacterium weaverense sp. nov. and Flavobacterium segetis sp. nov., novel psychrophiles isolated from the Antarctic. Int. J. Syst. Evol. Microbiol. 56, 1239–1244.CrossRefGoogle Scholar
  47. Yoon, H.S., Aslam, Z., Song, G.C., Kim, S.W., Jeon, C.O., Chon, T.S., and Chung, Y.R. 2009. Flavobacterium sasangense sp. nov., isolated from a wastewater stream polluted with heavy metals. Int. J. Syst. Evol. Microbiol. 59, 1162–1166.CrossRefGoogle Scholar
  48. Yoon, S.H., Ha, S.M., Lim, J., Kwon, S., and Chun, J. 2017. A largescale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 110, 1281–1286.CrossRefGoogle Scholar
  49. Yoon, J.H., Park, S., Kang, S.J., Oh, S.J., Myung, S.C., and Kim, W. 2011. Flavobacterium ponti sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 61, 81–85.CrossRefGoogle Scholar
  50. Zamora, L., Fernandez-Garayzabal, J.F., Sanchez-Porro, C., Palacios, M.A., Moore, E.R., Dominguez, L., Ventosa, A., and Vela, A.I. 2013. Flavobacterium plurextorum sp. nov. isolated from farmed rainbow trout (Oncorhynchus mykiss). PLoS One 8, e67741.CrossRefGoogle Scholar
  51. Zamora, L., Vela, A.I., Sanchez-Porro, C., Palacios, M.A., Moore, E.R., Dominguez, L., Ventosa, A., and Fernandez-Garayzabal, J.F. 2014. Flavobacterium tructae sp. nov. and Flavobacterium piscis sp. nov., isolated from farmed rainbow trout (Oncorhynchus mykiss). Int. J. Syst. Evol. Microbiol. 64, 392–399.CrossRefGoogle Scholar
  52. Zhang, H., Cheng, M.G., Sun, B., Guo, S.H., Song, M., Li, Q., and Huang, X. 2015. Flavobacterium suzhouense sp. nov., isolated from farmland river sludge. Int. J. Syst. Evol. Microbiol. 65, 370–374.CrossRefGoogle Scholar
  53. Zhang, B., Liu, Z.Q., and Zheng, Y.G. 2017. Flavobacterium quisquiliarum sp. nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 67, 3965–3970.CrossRefGoogle Scholar
  54. Zhang, G., Xian, W., Chu, Q., Yang, J., Liu, W., Yang, L., Xiao, M., Jiang, H., and Li, W. 2016. Flavobacterium terriphilum sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 66, 4276–4281.CrossRefGoogle Scholar
  55. Zhao, J.C., Cheng, J., Zhang, Q., Gao, Z.W., Zhang, M.Y., and Zhang, Y.X. 2018. Flavobacterium artemisiae sp. nov., isolated from the rhizosphere of Artemisia annua L. and emended descriptions of Flavobacterium compostarboris and Flavobacterium procerum. Int. J. Syst. Evol. Microbiol. 68, 1509–1513.CrossRefGoogle Scholar
  56. Zhou, M.Y., Zhang, X.Y., Yang, X.D., Zhang, Y.J., He, H.L., and Ning, D. 2017. Flavobacterium ardleyense sp. nov., isolated from Antarctic soil. Int. J. Syst. Evol. Microbiol. 67, 3996–4001.CrossRefGoogle Scholar
  57. Zhou, M.Y., Zhang, Y.J., Zhang, X.Y., Yang, X.D., He, H.L., Ning, D., and Du, Z. 2018. Flavobacterium phocarum sp. nov., isolated from soils of a seal habitat in Antarctica. Int. J. Syst. Evol. Microbiol. 68, 536–541.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Yochan Joung
    • 1
  • Hye-Jin Jang
    • 1
  • Jaeho Song
    • 1
  • Jang-Cheon Cho
    • 1
    Email author
  1. 1.Department of Biological SciencesInha UniversityIncheonRepublic of Korea

Personalised recommendations