Journal of Microbiology

, Volume 57, Issue 1, pp 64–73 | Cite as

Effective mucosal live attenuated Salmonella vaccine by deleting phosphotransferase system component genes ptsI and crr

  • Yong Zhi
  • Shun Mei Lin
  • A-Yeung Jang
  • Ki Bum Ahn
  • Hyun Jung Ji
  • Hui-Chen Guo
  • Sangyong LimEmail author
  • Ho Seong SeoEmail author
Microbial Pathogenesis and Host-Microbe Interaction


Salmonella enterica is a major human pathogen that causes invasive non-typhoidal Salmonellosis (iNTS), resulting in significant morbidity and mortality. Although a number of pre-clinical and clinical studies have reported on the feasibility of developing a safe and effective vaccine against iNTS, there have been no licensed Salmonella vaccines available to protect against NTS strains. Vaccine formulations of highest priority for NTS are live attenuated vaccines, which can elicit effective induction of intestinal mucosal and intracellular bacteria-specific cell mediated immune responses. Since glucose is crucial for intracellular survival and replication in host cells, we constructed strains with mutations in components of the glucose uptake system, called the phosphotransferase system (PTS), and compared the relative virulence and immune responses in mice. In this study, we found that the strain with mutations in both ptsI and crr (KST0556) was the most attenuated strain among the tested strains, and proved to be highly effective in inducing a mucosal immune response that can protect against NTS infections in mice. Thus, we suggest here that KST0556 (Δptscrr) is a potential live vaccine candidate for NTS, and may also be a candidate for a live delivery vector for heterologous antigens. Moreover, since PTS is a well-conserved glucose transporter system in both Gramnegative and Gram-positive bacteria, the ptsI and crr genes may be potential targets for creating live bacterial vectors or vaccine strains.


Salmonella Typhimurium phosphotransferase system live attenuation vaccine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ao, T.T., Feasey, N.A., Gordon, M.A., Keddy, K.H., Angulo, F.J., and Crump, J.A. 2015. Global burden of invasive nontyphoidal Salmonella disease, 2010. Emerg. Infect. Dis. 21, 941.CrossRefGoogle Scholar
  2. Batz, M.B., Hoffmann, S., and Morris, J.G. 2012. Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J. Food Prot. 75, 1278–1291.CrossRefGoogle Scholar
  3. Bowden, S.D., Hopper-Chidlaw, A.C., Rice, C.J., Ramachandran, V.K., Kelly, D.J., and Thompson, A. 2014. Nutritional and metabolic requirements for the infection of HeLa cells by Salmonella enterica serovar Typhimurium. PLoS One 9, e96266.CrossRefGoogle Scholar
  4. Bowden, S.D., Rowley, G., Hinton, J.C., and Thompson, A. 2009. Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar Typhimurium. Infect. Immun. 77, 3117–3126.CrossRefGoogle Scholar
  5. Church, J.A., Parker, E.P., Kosek, M.N., Kang, G., Grassly, N.C., Kelly, P., and Prendergast, A.J. 2018. Exploring the relationship between environmental enteric dysfunction and oral vaccine responses. Future Microbiol. 13, 1055–1070.CrossRefGoogle Scholar
  6. Coombes, B.K., Coburn, B.A., Potter, A.A., Gomis, S., Mirakhur, K., Li, Y., and Finlay, B.B. 2005. Analysis of the contribution of Salmonella pathogenicity islands 1 and 2 to enteric disease progression using a novel bovine ileal loop model and a murine model of infectious enterocolitis. Infect. Immun. 73, 7161–7169.CrossRefGoogle Scholar
  7. Crump, J.A., Kretsinger, K., Gay, K., Hoekstra, R.M., Vugia, D.J., Hurd, S., Segler, S.D., Megginson, M., Luedeman, L.J., Shiferaw, B., et al. 2008. Clinical response and outcome of infection with Salmonella enterica serotype Typhi with decreased susceptibility to fluoroquinolones: a United States foodnet multicenter retrospective cohort study. Antimicrob. Agents Chemother. 52, 1278–1284.CrossRefGoogle Scholar
  8. Cryz, S.J.Jr., Vanprapar, N., Thisyakorn, U., Olanratmanee, T., Losonsky, G., Levine, M.M., and Chearskul, S. 1993. Safety and immunogenicity of Salmonella Typhi Ty21a vaccine in young Thai children. Infect. Immun. 61, 1149–1151.Google Scholar
  9. Curtiss, R. and Kelly, S.M. 1987. Salmonella Typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect. Immun. 55, 3035–3043.Google Scholar
  10. Datsenko, K.A. and Wanner, B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645.CrossRefGoogle Scholar
  11. De Reuse, H. and Danchin, A. 1988. The ptsH, ptsI, and crr genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: a complex operon with several modes of transcription. J. Bacteriol. 170, 3827–3837.CrossRefGoogle Scholar
  12. DeRoeck, D., Clemens, J.D., Nyamete, A., and Mahoney, R.T. 2005. Policymakers’ views regarding the introduction of new-generation vaccines against typhoid fever, shigellosis and cholera in Asia. Vaccine 23, 2762–2774.CrossRefGoogle Scholar
  13. DeRoeck, D., Ochiai, R.L., Yang, J., Anh, D.D., Alag, V., and Clemens, J.D. 2008. Typhoid vaccination: the Asian experience. Expert Rev. Vaccines 7, 547–560.CrossRefGoogle Scholar
  14. Deutscher, J., Francke, C., and Postma, P.W. 2006. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031.CrossRefGoogle Scholar
  15. Dills, S.S., Apperson, A., Schmidt, M.R., and Saier, M.H.Jr. 1980. Carbohydrate transport in bacteria. Microbiol. Rev. 44, 385–418.Google Scholar
  16. Engels, E.A., Falagas, M.E., Lau, J., and Bennish, M.L. 1998. Typhoid fever vaccines: a meta-analysis of studies on efficacy and toxicity. BMJ 316, 110–116.CrossRefGoogle Scholar
  17. Feasey, N.A., Dougan, G., Kingsley, R.A., Heyderman, R.S., and Gordon, M.A. 2012. Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. Lancet 379, 2489–2499.CrossRefGoogle Scholar
  18. Fraser, A., Paul, M., Goldberg, E., Acosta, C.J., and Leibovici, L. 2007. Typhoid fever vaccines: systematic review and meta-analysis of randomised controlled trials. Vaccine 25, 7848–7857.CrossRefGoogle Scholar
  19. Galen, J.E., Simon, R., and Ernst, R.K. 2011. Salmonella expressing detoxified lipopolysaccharide is immunogenic and protective both as an attenuated vaccine and for delivery of foreign antigens. Expert Rev. Vaccines 10, 1679–1682.CrossRefGoogle Scholar
  20. Garcia-Del Portillo, F., Pucciarelli, M.G., and Casadesus, J. 1999. DNA adenine methylase mutants of Salmonella Typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc. Natl. Acad. Sci. USA 96, 11578–11583.CrossRefGoogle Scholar
  21. Girard, M.P., Steele, D., Chaignat, C.L., and Kieny, M.P. 2006. A review of vaccine research and development: human enteric infections. Vaccine 24, 2732–2750.CrossRefGoogle Scholar
  22. Hindle, Z., Chatfield, S.N., Phillimore, J., Bentley, M., Johnson, J., Cosgrove, C.A., Ghaem-Maghami, M., Sexton, A., Khan, M., Brennan, F.R., et al. 2002. Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect. Immun. 70, 3457–3467.CrossRefGoogle Scholar
  23. Hoiseth, S.K. and Stocker, B.A. 1981. Aromatic-dependent Salmonella Typhimurium are non-virulent and effective as live vaccines. Nature 291, 238–239.CrossRefGoogle Scholar
  24. Kantele, A., Pakkanen, S.H., Siitonen, A., Karttunen, R., and Kantele, J.M. 2012. Live oral typhoid vaccine Salmonella Typhi Ty21a-a surrogate vaccine against non-typhoid salmonella? Vaccine 30, 7238–7245.CrossRefGoogle Scholar
  25. Khan, M.I., Soofi, S.B., Ochiai, R.L., Habib, M.A., Sahito, S.M., Nizami, S.Q., Acosta, C.J., Clemens, J.D., Bhutta, Z.A., and Group, D.T.K.V.E.S. 2012. Effectiveness of Vi capsular polysaccharide typhoid vaccine among children: a cluster randomized trial in Karachi, Pakistan. Vaccine 30, 5389–5395.CrossRefGoogle Scholar
  26. LaRock, D.L., Chaudhary, A., and Miller, S.I. 2015. Salmonellae interactions with host processes. Nat. Rev. Microbiol. 13, 191–205.CrossRefGoogle Scholar
  27. Le Bouguenec, C. and Schouler, C. 2011. Sugar metabolism, an additional virulence factor in enterobacteria. Int. J. Med. Microbiol. 301, 1–6.CrossRefGoogle Scholar
  28. Lim, S., Han, A., Kim, D., and Seo, H.S. 2015. Transcriptional profiling of an attenuated Salmonella Typhimurium ptsI mutant strain under low-oxygen conditions using microarray analysis. J. Bacteriol. Virol. 45, 200–214.CrossRefGoogle Scholar
  29. Lundin, B.S., Johansson, C., and Svennerholm, A.M. 2002. Oral immunization with a Salmonella enterica serovar Typhi vaccine induces specific circulating mucosa-homing CD4+ and CD8+ T cells in humans. Infect. Immun. 70, 5622–5627.CrossRefGoogle Scholar
  30. Luo, Y., Kong, Q., Yang, J., Golden, G., Wanda, S.Y., Jensen, R.V., Ernst, P.B., and Curtiss, R. 3rd 2011. Complete genome sequence of the universal killer Salmonella enterica serovar Typhimurium UK-1 (ATCC 68169). J. Bacteriol. 193, 4035–4036.CrossRefGoogle Scholar
  31. Majowicz, S.E., Musto, J., Scallan, E., Angulo, F.J., Kirk, M., O’Brien, S.J., Jones, T.F., Fazil, A., Hoekstra, R.M., and International Collaboration on Enteric Disease’Burden of Illness, S. 2010. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 50, 882–889.CrossRefGoogle Scholar
  32. Maze, A., Glatter, T., and Bumann, D. 2014. The central metabolism regulator EIIAGlc switches Salmonella from growth arrest to acute virulence through activation of virulence factor secretion. Cell Rep. 7, 1426–1433.CrossRefGoogle Scholar
  33. Meiring, J.E., Gibani, M., and Ty, V.A.C.C.M.G. 2017. The typhoid vaccine acceleration consortium (TyVAC): Vaccine effectiveness study designs: Accelerating the introduction of typhoid conjugate vaccines and reducing the global burden of enteric fever. Report from a meeting held on 26–27 October 2016, Oxford, UK.Vaccine 35, 5081–5088.Google Scholar
  34. O’Callaghan, D., Maskell, D., Liew, F.Y., Easmon, C.S., and Dougan, G. 1988. Characterization of aromatic-and purine-dependent Salmonella Typhimurium: attention, persistence, and ability to induce protective immunity in BALB/c mice. Infect. Immun. 56, 419–423.Google Scholar
  35. Paterson, G.K., Cone, D.B., Peters, S.E., and Maskell, D.J. 2009. Redundancy in the requirement for the glycolytic enzymes phosphofructokinase (Pfk) 1 and 2 in the in vivo fitness of Salmonella enterica serovar Typhimurium. Microb. Pathog. 46, 261–265.CrossRefGoogle Scholar
  36. Poncet, S., Milohanic, E., Maze, A., Nait Abdallah, J., Ake, F., Larribe, M., Deghmane, A.E., Taha, M.K., Dozot, M., De Bolle, X., et al. 2009. Correlations between carbon metabolism and virulence in bacteria. Contrib. Microbiol. 16, 88–102.CrossRefGoogle Scholar
  37. Postma, P.W., Lengeler, J.W., and Jacobson, G.R. 1993. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57, 543–594.Google Scholar
  38. Solans, L., Uranga, S., Aguilo, N., Arnal, C., Gomez, A.B., Monzon, M., Badiola, J.J., Gicquel, B., and Martin, C. 2014. Hyper-attenuated MTBVAC erp mutant protects against tuberculosis in mice. Vaccine 32, 5192–5197.CrossRefGoogle Scholar
  39. Steeb, B., Claudi, B., Burton, N.A., Tienz, P., Schmidt, A., Farhan, H., Maze, A., and Bumann, D. 2013. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog. 9, e1003301.CrossRefGoogle Scholar
  40. Tennant, S.M. and Levine, M.M. 2015. Live attenuated vaccines for invasive Salmonella infections. Vaccine 33 Suppl 3, C36–41.CrossRefGoogle Scholar
  41. Thomas, M.K., Perez, E., Majowicz, S.E., Reid-Smith, R., Olea, A., Diaz, J., Solari, V., and McEwen, S.A. 2011. Burden of acute gastrointestinal illness in the Metropolitan region, Chile, 2008. Epidemiol. Infect. 139, 560–571.CrossRefGoogle Scholar
  42. Varki, A. 2017. Biological roles of glycans. Glycobiology 27, 3–49.CrossRefGoogle Scholar
  43. Wahid, R., Zafar, S.J., McArthur, M.A., Pasetti, M.F., Levine, M.M., and Sztein, M.B. 2014. Live oral Salmonella enterica serovar Typhi vaccines Ty21a and CVD 909 induce opsonophagocytic functional antibodies in humans that cross-react with S. Paratyphi A and S. Paratyphi B. Clin. Vaccine Immunol. 21, 427–434.CrossRefGoogle Scholar
  44. Wiedemann, A., Virlogeux-Payant, I., Chausse, A.M., Schikora, A., and Velge, P. 2014. Interactions of Salmonella with animals and plants. Front. Microbiol. 5, 791.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Yong Zhi
    • 1
    • 2
  • Shun Mei Lin
    • 1
  • A-Yeung Jang
    • 1
    • 3
  • Ki Bum Ahn
    • 1
  • Hyun Jung Ji
    • 1
    • 4
  • Hui-Chen Guo
    • 5
  • Sangyong Lim
    • 1
    • 2
    Email author
  • Ho Seong Seo
    • 1
    • 2
    Email author
  1. 1.Radiation Biotechnology DivisionKorea Atomic Energy Research InstituteJeongeupRepublic of Korea
  2. 2.Department of Radiation Biotechnology and Applied Radioisotope ScienceUniversity of Science and TechnologyDaejeonRepublic of Korea
  3. 3.Department of Biological SciencesChonbuk National UniversityJeonjuRepublic of Korea
  4. 4.Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of DentistrySeoul National UniversitySeoulRepublic of Korea
  5. 5.State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhouP. R. China

Personalised recommendations