Advertisement

Transcriptome analysis of differential gene expression in Dichomitus squalens during interspecific mycelial interactions and the potential link with laccase induction

  • Zixuan Zhong
  • Nannan Li
  • Binghui He
  • Yasuo Igarashi
  • Feng LuoEmail author
Article

Abstract

Interspecific mycelial interactions between white rot fungi are always accompanied by an increased production of laccase. In this study, the potential of the white rot fungus Dichomitus squalens to enhance laccase production during interactions with two other white rot fungi, Trametes versicolor or Pleurotus ostreatus, was assessed. To probe the mechanism of laccase induction and the role that laccase plays during combative interaction, we analyzed the differential gene expression profile of the laccase induction response to stressful conditions during fungal interaction. We further confirmed the expression patterns of 16 selected genes by qRT-PCR analysis. We noted that many differentially expressed genes (DEGs) encoded proteins that were involved in xenobiotic detoxification and reactive oxygen species (ROS) generation or reduction, including aldo/keto reductase, glutathione S-transferases, cytochrome P450 enzymes, alcohol oxidases and dehydrogenase, manganese peroxidase and laccase. Furthermore, many DEG-encoded proteins were involved in antagonistic mechanisms of nutrient acquisition and antifungal properties, including glycoside hydrolase, glucanase, chitinase and terpenoid synthases. DEG analyses effectively revealed that laccase induction was likely caused by protective responses to oxidative stress and nutrient competition during interspecific fungal interactions.

Keywords

white rot fungi laccase mycelial interactions transcriptome analysis Dichomitus squalens 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8398_MOESM1_ESM.pdf (1.6 mb)
Supplementary material, approximately 1626 KB.

References

  1. Arfi, Y., Levasseur, A., and Record, E. 2013. Differential gene expression in Pycnoporus coccineus during interspecific mycelial interactions with different competitors. Appl. Environ. Microbiol. 79, 6626–6636.CrossRefGoogle Scholar
  2. Aust, S.D., Swaner, P.R., and Stahl, J.D. 2004. Detoxification and metabolism of chemicals by white-rot fungi, pp. 3–14. In Pesticide decontamination and detoxification. Oxford University Press, Washington, D.C., USA.Google Scholar
  3. Aust, S.D., Swaner, P.R., Stahl, J.D., Gan, J.J., Zhu, P.C., Aust, S.D., and Lemley, A.T. 2004. Detoxification and metabolism of chemicals by white-rot fungi. Acs. Symposium 863, 3–14.CrossRefGoogle Scholar
  4. Baldrian, P. 2004. Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol. Ecol. 50, 245–253.CrossRefGoogle Scholar
  5. Boddy, L. 2000. Interspecific combative interactions between wooddecaying basidiomycetes. FEMS Microbiol. Ecol. 31, 185–194.CrossRefGoogle Scholar
  6. Chen, C.H., Ferreira, J.C.B., Gross, E.R., and Mochly-Rosen, D. 2014. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol. Rev. 94, 1–34.CrossRefGoogle Scholar
  7. Chi, Y., Hatakka, A., and Maijala, P. 2007. Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? Int. Biodeterior. Biodegradation 59, 32–39.CrossRefGoogle Scholar
  8. Cho, N.S., Wilkolazka, A.J., Staszczak, M., Cho, H.Y., and Ohga, S. 2009. The role of laccase from white rot fungi to stress conditions. J. Fac. Agr. Kyushu Univ. 54, 81–83.Google Scholar
  9. Cruz-Ortega, R., Lara-Núñez, A., and Anaya, A.L. 2007. Allelochemical stress can trigger oxidative damage in receptor plants. Plant Signal. Behav. 2, 269–270.CrossRefGoogle Scholar
  10. Daniel, G., Volc, J., Filonova, L., Plihal, O., Kubatova, E., and Halada, P. 2007. Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl. Environ. Microbiol. 73, 6241–6253.CrossRefGoogle Scholar
  11. Dong, Y.C., Wang, W., Hu, Z.C., Fu, M.L., and Chen, Q.H. 2012. The synergistic effect on production of lignin-modifying enzymes through submerged co-cultivation of Phlebia radiata, Dichomitus squalens and Ceriporiopsis subvermispora using agricultural residues. Bioprocess Biosyst. Eng. 35, 751–760.CrossRefGoogle Scholar
  12. Eggert, C., Temp, U., and Eriksson, K.E. 1996. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl. Environ. Microbiol. 62, 1151.Google Scholar
  13. Eisenman, H.C. and Casadevall, A. 2012. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 93, 931–940.CrossRefGoogle Scholar
  14. Eisenman, H.C., Mues, M., Weber, S.E., Frases, S., Chaskes, S., Gerfen, G., and Casadevall, A. 2007. Cryptococcus neoformans laccase catalyses melanin synthesis from both D- and L-DOPA. Microbiology 153, 3954–3962.CrossRefGoogle Scholar
  15. El Ariebi, N., Hiscox, J., Scriven, S.A., Müller, C.T., and Boddy, L. 2016. Production and effects of volatile organic compounds during interspecific interactions. Fungal Ecol. 20, 144–154.CrossRefGoogle Scholar
  16. Evans, J.A., Eyre, C.A., Rogers, H.J., Boddy, L., and Müller, C.T. 2008. Changes in volatile production during interspecific interactions between four wood rotting fungi growing in artificial media. Fungal Ecol. 1, 57–68.CrossRefGoogle Scholar
  17. Eyre, C., Muftah, W., Hiscox, J., Hunt, J., Kille, P., Boddy, L., and Rogers, H.J. 2010. Microarray analysis of differential gene expression elicited in Trametes versicolor during interspecific mycelial interactions. Fungal Biol. 114, 646–660.CrossRefGoogle Scholar
  18. Ferreira Gregorio, A.P., Da Silva, I.R., Sedarati, M.R., and Hedger, J.N. 2006. Changes in production of lignin degrading enzymes during interactions between mycelia of the tropical decomposer basidiomycetes Marasmiellus troyanus and Marasmius pallescens. Mycol. Res. 110, 161–168.CrossRefGoogle Scholar
  19. Flores, C., Vidal, C., Trejo-Hernandez, M.R., Galindo, E., and Serrano-Carreon, L. 2009. Selection of Trichoderma strains capable of increasing laccase production by Pleurotus ostreatus and Agaricus bisporus in dual cultures. J. Appl. Microbiol. 106, 249–257.CrossRefGoogle Scholar
  20. Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R.A., Henrissat, B., Martínez, A.T., Otillar, R., Spatafora, J.W., and Yadav, J.S. 2012. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715.CrossRefGoogle Scholar
  21. Flundas, D. and Hibbett, D.S. 2012. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715.CrossRefGoogle Scholar
  22. Garcia-Sanchez, M., Garrido, I., Casimiro Ide, J., Casero, P.J., Espinosa, F., Garcia-Romera, I., and Aranda, E. 2012. Defence response of tomato seedlings to oxidative stress induced by phenolic compounds from dry olive mill residue. Chemosphere 89, 708–716.CrossRefGoogle Scholar
  23. Gonzalez, F.J. 2005. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat. Res. 569, 101–110.CrossRefGoogle Scholar
  24. Heilmann-Clausen, J. and Boddy, L. 2005. Inhibition and stimulation effects in communities of wood decay fungi: exudates from colonized wood influence growth by other species. Microb. Ecol. 49, 399–406.CrossRefGoogle Scholar
  25. Hiscox, J., Baldrian, P., Rogers, H.J., and Boddy, L. 2010. Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal Genet. Biol. 47, 562–571.CrossRefGoogle Scholar
  26. Iakovlev, A., Olson, A., Elfstrand, M., and Stenlid, J. 2004. Differential gene expression during interactions between Heterobasidion annosum and Physisporinus sanguinolentus. FEMS Microbiol. Lett. 241, 79–85.CrossRefGoogle Scholar
  27. Jaszek, M., Grzywnowicz, K., Malarczyk, E., and Leonowicz, A. 2006. Enhanced extracellular laccase activity as a part of the response system of white rot fungi: Trametes versicolor and Abortiporus biennis to paraquat-caused oxidative stress conditions. Pestic. Biochem. Physiol. 85, 147–154.CrossRefGoogle Scholar
  28. Jeon, J.R., Baldrian, P., Murugesan, K., and Chang, Y.S. 2012. Laccase- catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb. Biotechnol. 5, 318–332.CrossRefGoogle Scholar
  29. Jonkers, W., Rodriguez Estrada, A.E., Lee, K., Breakspear, A., May, G., and Kistler, H.C. 2012. Metabolome and transcriptome of the interaction between Ustilago maydis and Fusarium verticillioides in vitro. Appl. Environ. Microbiol. 78, 3656–3667.CrossRefGoogle Scholar
  30. Kannaiyan, R., Mahinpey, N., Kostenko, V., and Martinuzzi, R.J. 2015. Nutrient media optimization for simultaneous enhancement of the laccase and peroxidases production by coculture of Dichomitus squalens and Ceriporiopsis subvermispora. Biotechnol. Appl. Biochem. 62, 173–185.CrossRefGoogle Scholar
  31. Kuhar, F., Castiglia, V., and Levin, L. 2015. Enhancement of laccase production and malachite green decolorization by co-culturing Ganoderma lucidum and Trametes versicolor in solid-state fermentation. Int. Biodeterior. Biodegradation 104, 238–243.CrossRefGoogle Scholar
  32. Lara, O.T., Riveros, R.H., and Aguirre, J. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol. Microbiol. 50, 1241–1255.CrossRefGoogle Scholar
  33. Li, Q., Bai, Z., O’Donnell, A., Harvey, L.M., Hoskisson, P.A., and McNeil, B. 2011. Oxidative stress in fungal fermentation processes: the roles of alternative respiration. Biotechnol. Lett. 33, 457–467.CrossRefGoogle Scholar
  34. Li, B. and Dewey, C.N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.CrossRefGoogle Scholar
  35. Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method. Methods 25, 402–408.CrossRefGoogle Scholar
  36. Mariani, D., Mathias, C.J., da Silva, C.G., Herdeiro Rda, S., Pereira, R., Panek, A.D., Eleutherio, E.C., and Pereira, M.D. 2008. Involvement of glutathione transferases, Gtt1and Gtt2, with oxidative stress response generated by H2O2 during growth of Saccharomyces cerevisiae. Redox Rep. 13, 246–254.CrossRefGoogle Scholar
  37. Mayer, A.M. and Staples, R.C. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60, 551–565.CrossRefGoogle Scholar
  38. Mazhawidza, W., Banda, Y., and Rajendran, N. 2014. Bioinformatic identification of aldo-keto reductase from newly isolated arthrobacter nicotianae strain PR and its phylogenetic analysis among soil bacteria. Open Access J. Sci. Technol. 2, 1–7.CrossRefGoogle Scholar
  39. Nosanchuk, J.D. and Casadevall, A. 2003. The contribution of melanin to microbial pathogenesis. Cell. Microbiol. 5, 203–223.CrossRefGoogle Scholar
  40. Peiris, D., Dunn, W., Brown, M., Kell, D., Roy, I., and Hedger, J. 2008. Metabolite profiles of interacting mycelial fronts differ for pairings of the wood decay basidiomycete fungus, Stereum hirsutum with its competitors Coprinus micaceus and Coprinus disseminatus. Metabolomics 4, 52–62.CrossRefGoogle Scholar
  41. Piscitelli, A., Giardina, P., Lettera, V., Pezzella, C., Sannia, G., and Faraco, V. 2011. Induction and transcriptional regulation of laccases in fungi. Curr. Genomics 12, 104–112.CrossRefGoogle Scholar
  42. Riva, S. 2006. Laccases: blue enzymes for green chemistry. Trends Biotechnol. 24, 219–226.CrossRefGoogle Scholar
  43. Robinson, M.D., McCarthy, D.J., and Smyth, G.K. 2010. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.CrossRefGoogle Scholar
  44. Shetty, N.P., Mehrabi, R., Lutken, H., Haldrup, A., Kema, G.H., Collinge, D.B., and Jorgensen, H.J. 2007. Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol. 174, 637–647.CrossRefGoogle Scholar
  45. Silar, P. 2005. Peroxide accumulation and cell death in filamentous fungi induced by contact with a contestant. Mycol. Res. 109, 137–149.CrossRefGoogle Scholar
  46. Ujor, V.C., Monti, M., Peiris, D.G., Clements, M.O., and Hedger, J.N. 2012. The mycelial response of the white-rot fungus, Schizophyllum commune to the biocontrol agent, Trichoderma viride. Fungal Biol. 116, 332–341.CrossRefGoogle Scholar
  47. Wei, F., Hong, Y., Liu, J., Yuan, J., Fang, W., Peng, H., and Xiao, Y. 2010. Gongronella sp. induces overproduction of laccase in Panus rudis. J. Basic Microbiol. 50, 98–103.CrossRefGoogle Scholar
  48. Wells, J.M. and Boddy, L. 2002. Interspecific carbon exchange and cost of interactions between basidiomycete mycelia in soil and wood. Funct. Ecol. 16, 153–161.CrossRefGoogle Scholar
  49. Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., Kong, L., Gao, G., Li, C.Y., and Wei, L. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39, W316–322.CrossRefGoogle Scholar
  50. Yang, Y., Fan, F., Zhuo, R., Ma, F., Gong, Y., Wan, X., Jiang, M., and Zhang, X. 2012. Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathionebased antioxidative system. Appl. Environ. Microbiol. 78, 5845–5854.CrossRefGoogle Scholar
  51. Zhu, X. and Williamson, P.R. 2004. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res. 5, 1–10.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Zixuan Zhong
    • 1
  • Nannan Li
    • 1
  • Binghui He
    • 1
  • Yasuo Igarashi
    • 1
  • Feng Luo
    • 1
    Email author
  1. 1.Research Center of Bioenergy and Bioremediation, College of Resources and EnvironmentSouthwest UniversityChongqingP. R. China

Personalised recommendations