Advertisement

β-1,3-Glucan/CR3/SYK pathway-dependent LC3B-II accumulation enhanced the fungicidal activity in human neutrophils

  • Ding LiEmail author
  • Changsen Bai
  • Qing Zhang
  • Zheng Li
  • Di Shao
  • Xichuan Li
Article
  • 9 Downloads

Abstract

Since molecular genotyping has been established for the Candida species, studies have found that a single Candida strain (endemic strain) can persist over a long period of time and results in the spread of nosocomial invasive candidiasis without general characteristics of horizontal transmissions. Our previous study also found the existence of endemic strains in a cancer center in Tianjin, China. In the current study, we performed further investigation on endemic and non-endemic Candida albicans strains, with the aim of explaining the higher morbidity of endemic strains. In an in vivo experiment, mice infected with endemic strains showed significantly shorter survival time and higher kidney fungal burdens compared to mice infected with non-endemic strains. In an in vitro experiment, the killing percentage of neutrophils to endemic strains was significantly lower than that to non-endemic strains, which is positively linked to the ratio of LC3B-II/I in neutrophils. An immunofluorescence assay showed more β-1,3-glucan exposure on the cell walls of nonendemic strains compared to endemic strains. After blocking the β-glucan receptor (CR3) or inhibiting downstream kinase (SYK) in neutrophils, the killing percent to C. albicans (regardless of endemic and non-endemic strains) and the ratio of LC3B-II/I of neutrophils were significantly decreased. These data suggested that the killing capability of neutrophils to C. albicans was monitored by β-1,3-glucan via CR3/SYK pathway-dependent LC3B-II accumulation and provided an explanation for the variable killing capability of neutrophils to different strains of C. albicans, which would be beneficial in improving infection control and therapeutic strategies for invasive candidiasis.

Keywords

Candida albicans neutrophils immune evasion LC3B β-1,3-glucan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akoumianaki, T., Kyrmizi, I., Valsecchi, I., Gresnigt, M.S., Samonis, G., Drakos, E., Boumpas, D., Muszkieta, L., Prevost, M.C., Kontoyiannis, D.P., et al. 2016. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19, 79–90.CrossRefGoogle Scholar
  2. Asmundsdottir, L.R., Erlendsdottir, H., Haraldsson, G., Guo, H., Xu, J., and Gottfredsson, M. 2008. Molecular epidemiology of candidemia: evidence of clusters of smoldering nosocomial infections. Clin. Infect. Dis. 47, e17–e24.CrossRefGoogle Scholar
  3. Bandyopadhyay, U. and Overholtzer, M. 2016. LAP: the protector against autoimmunity. Cell Res. 26, 865–866.CrossRefGoogle Scholar
  4. Bonfim-Mendonca Pde, S., Ratti, B.A., Godoy Jda, S., Negri, M., Lima, N.C., Fiorini, A., Hatanaka, E., Consolaro, M.E., de Oliveira Silva, S., and Svidzinski, T.I. 2014. β-glucan induces reactive oxygen species production in human neutrophils to improve the killing of Candida albicans and Candida glabrata isolates from vulvovaginal candidiasis. PLoS One 9, e107805.CrossRefGoogle Scholar
  5. Cao, X. 2016. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 16, 35–50.CrossRefGoogle Scholar
  6. de Luca, A., Smeekens, S.P., Casagrande, A., Iannitti, R., Conway, K.L., Gresnigt, M.S., Begun, J., Plantinga, T.S., Joosten, L.A., van der Meer, J.W., et al. 2014. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc. Natl. Acad. Sci. USA 111, 3526–3531.CrossRefGoogle Scholar
  7. Dice, J.F. 2010. Artophagy: The art of autophagy-macroautophagy. Interview by Daniel J. Klionsky. Autophagy 6, 320–321.Google Scholar
  8. Duggan, S., Essig, F., Hunniger, K., Mokhtari, Z., Bauer, L., Lehnert, T., Brandes, S., Hader, A., Jacobsen, I.D., Martin, R., et al. 2015. Neutrophil activation by Candida glabrata but not Candida albicans promotes fungal uptake by monocytes. Cell. Microbiol. 17, 1259–1276.CrossRefGoogle Scholar
  9. Erwig, L.P. and Gow, N.A. 2016. Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol. 14, 163–176.CrossRefGoogle Scholar
  10. Ferwerda, B., Ferwerda, G., Plantinga, T.S., Willment, J.A., van Spriel, A.B., Venselaar, H., Elbers, C.C., Johnson, M.D., Cambi, A., Huysamen, C., et al. 2009. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361, 1760–1767.CrossRefGoogle Scholar
  11. Galan-Diez, M., Arana, D.M., Serrano-Gomez, D., Kremer, L., Casasnovas, J.M., Ortega, M., Cuesta-Dominguez, A., Corbi, A.L., Pla, J., and Fernandez-Ruiz, E. 2010. Candida albicans β-glucan exposure is controlled by the fungal CEK1-mediated mitogen-activated protein kinase pathway that modulates immune responses triggered through dectin-1. Infect. Immun. 78, 1426–1436.CrossRefGoogle Scholar
  12. Ganesan, S., Rathinam, V.A.K., Bossaller, L., Army, K., Kaiser, W.J., Mocarski, E.S., Dillon, C.P., Green, D.R., Mayadas, T.N., Levitz, S.M., et al. 2014. Caspase-8 modulates dectin-1 and complement receptor 3-driven IL-1β production in response to β-glucans and the fungal pathogen, Candida albicans. J. Immunol. 193, 2519–2530.CrossRefGoogle Scholar
  13. Gazendam, R.P., van de Geer, A., Roos, D., van den Berg, T.K., and Kuijpers, T.W. 2016. How neutrophils kill fungi. Immunol. Rev. 273, 299–311.CrossRefGoogle Scholar
  14. Gazendam, R.P., van Hamme, J.L., Tool, A.T., van Houdt, M., Verkuijlen, P.J., Herbst, M., Liese, J.G., van de Veerdonk, F.L., Roos, D., van den Berg, T.K., et al. 2014. Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood 124, 590–597.CrossRefGoogle Scholar
  15. Granica, S., Piwowarski, J.P., and Kiss, A.K. 2015. Ellagitannins modulate the inflammatory response of human neutrophils ex vivo. Phytomedicine 22, 1215–1222.CrossRefGoogle Scholar
  16. Kanayama, M., Inoue, M., Danzaki, K., Hammer, G., He, Y.W., and Shinohara, M.L. 2015. Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat. Commun. 6, 5779.CrossRefGoogle Scholar
  17. Kanayama, M. and Shinohara, M.L. 2016. Roles of autophagy and autophagy-related proteins in antifungal immunity. Front. Immunol. 7, 47.CrossRefGoogle Scholar
  18. Kapteyn, J.C., Hoyer, L.L., Hecht, J.E., Muller, W.H., Andel, A., Verkleij, A.J., Makarow, M., Van Den Ende, H., and Klis, F.M. 2000. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol. Microbiol. 35, 601–611.CrossRefGoogle Scholar
  19. Kenno, S., Perito, S., Mosci, P., Vecchiarelli, A., and Monari, C. 2016. Autophagy and reactive oxygen species are involved in neutrophil extracellular traps release induced by C. albicans morphotypes. Front. Microbiol. 7, 879.CrossRefGoogle Scholar
  20. Kim, S.H., Choi, J.K., Cho, S.Y., Lee, H.J., Park, S.H., Choi, S.M., Lee, D.G., Choi, J.H., Yoo, J.H., and Lee, J.W. 2018. Risk factors and clinical outcomes of breakthrough yeast bloodstream infections in patients with hematological malignancies in the era of newer antifungal agents. Med. Mycol. 56, 197–206.CrossRefGoogle Scholar
  21. Kobayashi, S.D., Malachowa, N., and DeLeo, F.R. 2018. Neutrophils and bacterial immune evasion. J. Innate Immun. doi: 10.1159/000487756.Google Scholar
  22. Kuijpers, T.W., van de Vijver, E., Weterman, M.A., de Boer, M., Tool, A.T., van den Berg, T.K., Moser, M., Jakobs, M.E., Seeger, K., Sanal, O., et al. 2009. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood 113, 4740–4746.CrossRefGoogle Scholar
  23. Kullberg, B.J. and Arendrup, M.C. 2015. Invasive candidiasis. N. Engl. J. Med. 373, 1445–1456.CrossRefGoogle Scholar
  24. Kyrmizi, I., Gresnigt, M.S., Akoumianaki, T., Samonis, G., Sidiropoulos, P., Boumpas, D., Netea, M.G., van de Veerdonk, F.L., Kontoyiannis, D.P., and Chamilos, G. 2013. Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J. Immunol. 191, 1287–1299.CrossRefGoogle Scholar
  25. Li, D., Li, X., Xia, R., Zhang, W., Zheng, S., Zhang, Q., Bai, C., and Zhang, P. 2015. Molecular surveillance of candidemia due to Candida albicans among cancer patients during 2009 to 2013 by microsatellite typing. Microb. Pathog. 81, 28–32.CrossRefGoogle Scholar
  26. Li, D., Xia, R., Zhang, Q., Bai, C., Li, Z., and Zhang, P. 2017. Evaluation of candidemia in epidemiology and risk factors among cancer patients in a cancer center of China: an 8-year case-control study. BMC Infect. Dis. 17, 536.CrossRefGoogle Scholar
  27. Lin, J., Wester, M.J., Graus, M.S., Lidke, K.A., and Neumann, A.K. 2016. Nanoscopic cell-wall architecture of an immunogenic ligand in Candida albicans during antifungal drug treatment. Mol. Biol. Cell. 27, 1002–1014.CrossRefGoogle Scholar
  28. Lortholary, O., Renaudat, C., Sitbon, K., Madec, Y., Denoeud-Ndam, L., Wolff, M., Fontanet, A., Bretagne, S., and Dromer, F. 2014. Worrisome trends in incidence and mortality of candidemia in intensive care units (Paris area, 2002-2010). Intensive Care Med. 40, 1303–1312.CrossRefGoogle Scholar
  29. Magill, S.S., Edwards, J.R., Bamberg, W., Beldavs, Z.G., Dumyati, G., Kainer, M.A., Lynfield, R., Maloney, M., McAllister-Hollod, L., Nadle, J., et al. 2014. Multistate point-prevalence survey of health care-associated infections. N. Engl. J. Med. 370, 1198–1208.CrossRefGoogle Scholar
  30. Mamishi, S., Zomorodian, K., Saadat, F., Gerami-Shoar, M., Tarazooie, B., and Siadati, S.A. 2005. A case of invasive aspergillosis in CGD patient successfully treated with Amphotericin B and INF-g. Ann. Clin. Microbiol. Antimicrob. 4, 4.CrossRefGoogle Scholar
  31. Marakalala, M.J., Vautier, S., Potrykus, J., Walker, L.A., Shepardson, K.M., Hopke, A., Mora-Montes, H.M., Kerrigan, A., Netea, M.G., Murray, G.I., et al. 2013. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS Pathog. 9, e1003315.CrossRefGoogle Scholar
  32. Mu, Y., Yan, X., Li, D., Zhao, D., Wang, L., Wang, X., Gao, D., Yang, J., Zhang, H., Li, Y., et al. 2018. NUPR1 maintains autolysosomal efflux by activating SNAP25 transcription in cancer cells. Autophagy 14, 654–670.CrossRefGoogle Scholar
  33. Sanjuan, M.A., Dillon, C.P., Tait, S.W., Moshiach, S., Dorsey, F., Connell, S., Komatsu, M., Tanaka, K., Cleveland, J.L., Withoff, S., et al. 2007. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257.CrossRefGoogle Scholar
  34. Shepardson, K.M., Ngo, L.Y., Aimanianda, V., Latge, J.P., Barker, B.M., Blosser, S.J., Iwakura, Y., Hohl, T.M., and Cramer, R.A. 2013. Hypoxia enhances innate immune activation to Aspergillus fumigatus through cell wall modulation. Microbes Infect. 15, 259–269.CrossRefGoogle Scholar
  35. Strasser, D., Neumann, K., Bergmann, H., Marakalala, M.J., Guler, R., Rojowska, A., Hopfner, K.P., Brombacher, F., Urlaub, H., Baier, G., et al. 2012. Syk kinase-coupled C-type lectin receptors engage protein kinase C-sigma to elicit Card9 adaptor-mediated innate immunity. Immunity 36, 32–42.CrossRefGoogle Scholar
  36. Tam, J.M., Mansour, M.K., Khan, N.S., Seward, M., Puranam, S., Tanne, A., Sokolovska, A., Becker, C.E., Acharya, M., Baird, M.A., et al. 2014. Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages. J. Infect. Dis. 210, 1844–1854.CrossRefGoogle Scholar
  37. Taylor, P.R., Tsoni, S.V., Willment, J.A., Dennehy, K.M., Rosas, M., Findon, H., Haynes, K., Steele, C., Botto, M., Gordon, S., et al. 2007. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nat. Immunol. 8, 31–38.CrossRefGoogle Scholar
  38. Tsai, M.H., Wang, S.H., Hsu, J.F., Lin, L.C., Chu, S.M., Huang, H.R., Chiang, M.C., Fu, R.H., Lu, J.J., and Huang, Y.C. 2015. Clinical and molecular characteristics of bloodstream infections caused by Candida albicans in children from 2003 to 2011. Clin. Microbiol. Infect. 21, 1018.CrossRefGoogle Scholar
  39. van de Veerdonk, F.L. and Dinarello, C.A. 2014. Deficient autophagy unravels the ROS paradox in chronic granulomatous disease. Autophagy 10, 1141–1142.CrossRefGoogle Scholar
  40. van de Vijver, E., Maddalena, A., Sanal, O., Holland, S.M., Uzel, G., Madkaikar, M., de Boer, M., van Leeuwen, K., Koker, M.Y., Parvaneh, N., et al. 2012. Hematologically important mutations: leukocyte adhesion deficiency (first update). Blood Cell. Mol. Dis. 48, 53–61.CrossRefGoogle Scholar
  41. Viviani, M.A., Cogliati, M., Esposto, M.C., Prigitano, A., and Tortorano, A.M. 2006. Four-year persistence of a single Candida albicans genotype causing bloodstream infections in a surgical ward proven by multilocus sequence typing. J. Clin. Microbiol. 44, 218–221.CrossRefGoogle Scholar
  42. Wang, S.H., Shen, M., Lin, H.C., Sun, P.L., Lo, H.J., and Lu, J.J. 2015. Molecular epidemiology of invasive Candida albicans at a tertiary hospital in northern Taiwan from 2003 to 2011. Med. Mycol. 53, 828–836.CrossRefGoogle Scholar
  43. Wheeler, R.T., Kombe, D., Agarwala, S.D., and Fink, G.R. 2008. Dynamic, morphotype-specific Candida albicans β-glucan exposure during infection and drug treatment. PLoS Pathog. 4, e1000227.CrossRefGoogle Scholar
  44. Wu, K., Luo, T., Li, L., Zhang, Q., Zhu, J., Gao, Q., Chen, M., and Zhu, M. 2015. Multilocus sequence typing of pathogenic Candida albicans isolates collected from a teaching hospital in Shanghai, China: A molecular epidemiology study. PLoS One 10, e0125245.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Ding Li
    • 1
    Email author
  • Changsen Bai
    • 1
  • Qing Zhang
    • 1
  • Zheng Li
    • 1
  • Di Shao
    • 2
  • Xichuan Li
    • 3
  1. 1.Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjin’s Clinical Research Center for CancerTianjinP. R. China
  2. 2.Denali Medpharma Co., LtdChongqingP. R. China
  3. 3.Tianjin Key Laboratory of Animal and Plant Resistance, College of Life SciencesTianjin Normal UniversityTianjinP. R. China

Personalised recommendations