Journal of Microbiology

, Volume 57, Issue 1, pp 18–22 | Cite as

Flavisolibacter aluminii sp. nov., a novel member of the genus Flavisolibacter isolated from an automotive air conditioning system

  • Hyosun Lee
  • Dong-Uk Kim
  • Suyeon Lee
  • Song-Gun Kim
  • A-Young Park
  • Jae-Hyung Ahn
  • Jong-Ok KaEmail author
Microbial Systematics and Evolutionary Microbiology


A Gram-stain-negative, aerobic, non-motile, rod-shaped, and yellow-pigmented bacterium, designated strain ID1709T, was isolated from an automotive air conditioning system collected in Korea. Analysis of 16S rRNA gene sequence similarity showed that strain ID1709T had 92.2–94.3% similarities with the type strains of members of the genus Flavisolibacter. The major cellular fatty acids were iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH, and summed feature 3 (C16:1ω7c and/or C16:1ω6c). The predominant respiratory quinone was MK-7. The polar lipids comprised phosphatidylethanolamine, aminoglycophospholipid, two unidentified aminolipids, and three unidentified lipids. The DNA G + C content of the strain was 35.6 mol%. Based on phenotypic, chemotaxonomic, and genotypic data, strain ID1709T represents a novel species in the genus Flavisolibacter, for which the name Flavisolibacter aluminii sp. nov. (= KACC 19451T = KCTC 52778T = NBRC 112870T), is proposed.


Flavisolibacter Flavisolibacter aluminii novel species polyphasic taxonomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8219_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1112 KB.


  1. Baik, K.S., Kim, M.S., Lee, J.H., Lee, S.S., Im, W.T., and Seoung, C.N. 2014. Flavisolibacter rigui sp. nov., isolated from freshwater of an artificial reservoir and emended description of the genus Flavisolibacter. Int. J. Syst. Evol. Microbiol. 64, 4038–4042.CrossRefGoogle Scholar
  2. Bernardet, J.F., Nakagawa, Y., and Holmes, B. 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 52, 1049–1070.Google Scholar
  3. Denner, E., Paukner, S., Kämpfer, P., Moore, E., Abraham, W.R., Busse, H.J., Wanner, G., and Lubitz, W. 2001. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int. J. Syst. Evol. Microbiol. 51, 827–828.CrossRefGoogle Scholar
  4. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefGoogle Scholar
  5. Felsenstein, J. 1985. Confidence-limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefGoogle Scholar
  6. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  7. Gonzalez, J.M. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G + C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.CrossRefGoogle Scholar
  8. Joo, E.S., Cha, S., Kim, M.K., Jheong, W., Seo, T., and Srinivasan, S. 2015. Flavisolibacter swuensis sp. nov. isolated from soil. J. Microbiol. 53, 442–447.CrossRefGoogle Scholar
  9. Kim, D.U., Lee, H., Lee, S., Kim, S.G., Park, A.Y., Ahn, J.H. and Ka, J.O. 2018. Flavisolibacter metallilatus sp. nov., isolated from an automotive air conditioning system and emended description of the genus Flavisolibacter. Int. J. Syst. Evol. Microbiol. 68, 917–923.CrossRefGoogle Scholar
  10. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefGoogle Scholar
  11. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefGoogle Scholar
  12. Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115–175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, USA.Google Scholar
  13. Lee, J.J., Kang, M.S., Kim, G.S., Lee, C.S., Lim, S., Lee, J., Roh, S.H., Kang, H., Ha, J.M., Bae, S., et al. 2016. Flavisolibacter tropicus sp. nov., isolated from tropical soil. Int. J. Syst. Evol. Microbiol. 66, 3413–3419.CrossRefGoogle Scholar
  14. Lee, H., Kim, D.U., Lee, S., Kim, S.G., Park, A.Y., Ahn, J.H., and Ka, J.O. 2018. Flavisolibacter carri sp. nov., isolated from an automotive air-conditioning system. Antonie van Leeuwenhoek 111, 1969–1976.CrossRefGoogle Scholar
  15. Lee, S., Malone, C., and Kemp, P.F. 1993. Use of multiple 16S rRNA-targeted fluorescent probes to increase signal strength and measure cellular RNA from natural planktonic bacteria. Mar. Ecol. Prog. Ser. 101, 193–201.CrossRefGoogle Scholar
  16. Pruesse, E., Peplies, J., and Glöckner, F.O. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829.CrossRefGoogle Scholar
  17. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.Google Scholar
  18. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI. Inc., Newark, DE, USA.Google Scholar
  19. Skerman, V.B.D. 1967. A guide to the identification of the genera of bacteria, with methods and digests of generic characteristics. 2d edn. Williams & Wilkins Co., Baltimore, USA.Google Scholar
  20. Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization. Methods for general and molecular bacteriology, pp. 607–654. In Gerhardt, P., Murray, R.G.E., Costilow, R.N., Nester, E.W., Wood, W.A., and Krieg, N.R. (eds.), American Society for Microbiology, Washington, USA.Google Scholar
  21. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequence and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefGoogle Scholar
  22. Yoon, M.H. and Im, W.T. 2007. Flavisolibacter ginsengiterrae gen. nov., sp. nov. and Flavisolibacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. Int. J. Syst. Evol. Microbiol. 57, 1834–1839.CrossRefGoogle Scholar
  23. Zhao, Y., Liu, Q., Kang, M.S., Jin, F., Yu, H., and Im, W.T. 2015. Flavisolibacter ginsenosidimutans sp. nov., with ginsenoside-converting activity isolated from soil used for cultivating ginseng. Int. J. Syst. Evol. Microbiol. 65, 4868–4872.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Hyosun Lee
    • 1
  • Dong-Uk Kim
    • 2
  • Suyeon Lee
    • 1
  • Song-Gun Kim
    • 3
    • 4
  • A-Young Park
    • 4
  • Jae-Hyung Ahn
    • 5
  • Jong-Ok Ka
    • 1
    Email author
  1. 1.Department of Agricultural Biotechnology and Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
  2. 2.Division of Bio-convergence, College of Convergence and Integrated ScienceKyonggi UniversitySuwonRepublic of Korea
  3. 3.University of Science and TechnologyDaejeonRepublic of Korea
  4. 4.Biological Resource Center / Korean Collection for Type Culture (KCTC)Korea Research Institute of Bioscience and BiotechnologyJeongeupRepublic of Korea
  5. 5.Agricultural Microbiology Division, National Institute of Agricultural SciencesRural Development AdministrationWanjuRepublic of Korea

Personalised recommendations