Journal of Microbiology

, Volume 56, Issue 12, pp 893–901 | Cite as

Characterization of the velvet regulators in Aspergillus flavus

  • Tae-Jin Eom
  • Heungyun Moon
  • Jae-Hyuk Yu
  • Hee-Soo Park


Fungal development and secondary metabolism are closely associated via the activities of the fungal NK-kB-type velvet regulators that are highly conserved in filamentous fungi. Here, we investigated the roles of the velvet genes in the aflatoxigenic fungus Aspergillus flavus. Distinct from other Aspergillus species, the A. flavus genome contains five velvet genes, veA, velB, velC, velD, and vosA. The deletion of velD blocks the production of aflatoxin B1, but does not affect the formation of sclerotia. Expression analyses revealed that vosA and velB mRNAs accumulated at high levels during the late phase of asexual development and in conidia. The absence of vosA or velB decreased the content of conidial trehalose and the tolerance of conidia to the thermal and UV stresses. In addition, double mutant analyses demonstrated that VosA and VelB play an inter-dependent role in trehalose biosynthesis and conidial stress tolerance. Together with the findings of previous studies, the results of the present study suggest that the velvet regulators play the conserved and vital role in sporogenesis, conidial trehalose biogenesis, stress tolerance, and aflatoxin biosynthesis in A. flavus.


Aspergillus flavus velvet regulators conidia aflatoxin VosA VelB 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_8417_MOESM1_ESM.pdf (827 kb)
Supplementary material, approximately 827 KB.


  1. Ahmed, Y.L., Gerke, J., Park, H.S., Bayram, O., Neumann, P., Ni, M., Dickmanns, A., Kim, S.C., Yu, J.H., Braus, G.H., et al. 2013. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-kB. PLoS Biol. 11, e1001750.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amaike, S. and Keller, N.P. 2011. Aspergillus flavus. Annu. Rev. Phytopathol. 49, 107–133.CrossRefPubMedGoogle Scholar
  3. Amaike, S. and Keller, N.P. 2009. Distinct roles for veA and laeA in development and pathogenesis of Aspergillus flavus. Eukaryot. Cell 8, 1051–1060.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baidya, S., Duran, R.M., Lohmar, J.M., Harris-Coward, P.Y., Cary, J.W., Hong, S.Y., Roze, L.V., Linz, J.E., and Calvo, A.M. 2014. VeA is associated with the response to oxidative stress in the aflatoxin producer Aspergillus flavus. Eukaryot. Cell 13, 1095–1103.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barratt, R.W., Johnson, G.B., and Ogata, W.N. 1965. Wild-type and mutant stocks of Aspergillus nidulans. Genetics 52, 233–246.PubMedPubMedCentralGoogle Scholar
  6. Bayram, O. and Braus, G.H. 2012. Coordination of secondary metabolism and development in fungi: The velvet family of regulatory proteins. FEMS Microbiol. Rev. 36, 1–24.CrossRefPubMedGoogle Scholar
  7. Bayram, O., Krappmann, S., Ni, M., Bok, J.W., Helmstaedt, K., Valerius, O., Braus-Stromeyer, S., Kwon, N.J., Keller, N.P., Yu, J.H., et al. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320, 1504–1506.CrossRefPubMedGoogle Scholar
  8. Bennett, J.W. and Klich, M. 2003. Mycotoxins. Clin. Microbiol. Rev. 16, 497–516.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Calvo, A.M. and Cary, J.W. 2015. Association of fungal secondary metabolism and sclerotial biology. Front. Microbiol. 6, 62.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cary, J.W., OBrian, G.R., Nielsen, D.M., Nierman, W., Harris-Coward, P., Yu, J., Bhatnagar, D., Cleveland, T.E., Payne, G.A., and Calvo, A.M. 2007. Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. Appl. Microbiol. Biotechnol. 76, 1107–1118.CrossRefPubMedGoogle Scholar
  11. Cary, J.W., Han, Z., Yin, Y., Lohmar, J.M., Shantappa, S., Harris-Coward, P.Y., Mack, B., Ehrlich, K.C., Wei, Q., Arroyo-Manzanares, N., et al. 2015. Transcriptome analysis of Aspergillus flavus reveals veA-dependent regulation of secondary metabolite gene clusters, including the novel aflavarin cluster. Eukaryot. Cell 14, 983–997.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cary, J.W., Harris-Coward, P.Y., Ehrlich, K.C., Di Mavungu, J.D., Malysheva, S.V., De Saeger, S., Dowd, P.F., Shantappa, S., Martens, S.L., and Calvo, A.M. 2014. Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment. Fungal Genet. Biol. 64, 25–35.CrossRefPubMedGoogle Scholar
  13. Chang, P.K., Scharfenstein, L.L., Li, P., and Ehrlich, K.C. 2013. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Fungal Genet. Biol. 58-59, 71–79.CrossRefPubMedGoogle Scholar
  14. Denning, D.W. 1998. Invasive aspergillosis. Clin. Infect. Dis. 26, 781–803; quiz 804–805.CrossRefPubMedGoogle Scholar
  15. Duran, R.M., Cary, J.W., and Calvo, A.M. 2007. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl. Microbiol. Biotechnol. 73, 1158–1168.CrossRefPubMedGoogle Scholar
  16. Duran, R.M., Gregersen, S., Smith, T.D., Bhetariya, P.J., Cary, J.W., Harris-Coward, P.Y., Mattison, C.P., Grimm, C., and Calvo, A.M. 2014. The role of Aspergillus flavus veA in the production of extracellular proteins during growth on starch substrates. Appl. Microbiol. Biotechnol. 98, 5081–5094.CrossRefPubMedGoogle Scholar
  17. Ebbole, D.J. 2010. The conidium, pp. 577–590. In Cellular and molecular biology of filamentous fungi. American Society of Microbiology, Washington, DC, USA.CrossRefGoogle Scholar
  18. Gallagher, R.T. and Wilson, B.J. 1979. Aflatrem, the tremorgenic mycotoxin from Aspergillus flavus. Mycopathologia 66, 183–185.CrossRefPubMedGoogle Scholar
  19. He, Z.M., Price, M.S., OBrian, G.R., Georgianna, D.R., and Payne, G.A. 2007. Improved protocols for functional analysis in the pathogenic fungus Aspergillus flavus. BMC Microbiol. 7, 104.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hedayati, M.T., Pasqualotto, A.C., Warn, P.A., Bowyer, P., and Denning, D.W. 2007. Aspergillus flavus: Human pathogen, allergen and mycotoxin producer. Microbiology 153, 1677–1692.CrossRefPubMedGoogle Scholar
  21. Hicks, J.K., Yu, J.H., Keller, N.P., and Adams, T.H. 1997. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J. 16, 4916–4923.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kensler, T.W., Roebuck, B.D., Wogan, G.N., and Groopman, J.D. 2011. Aflatoxin: A 50-year odyssey of mechanistic and translational toxicology. Toxicol. Sci. 120 Suppl 1, S28–48.CrossRefPubMedGoogle Scholar
  23. Klich, M.A. 2007. Aspergillus flavus: The major producer of aflatoxin. Mol. Plant Pathol. 8, 713–722.CrossRefPubMedGoogle Scholar
  24. Krishnan, S., Manavathu, E.K., and Chandrasekar, P.H. 2009. Aspergillus flavus: An emerging non-fumigatus Aspergillus species of significance. Mycoses 52, 206–222.CrossRefPubMedGoogle Scholar
  25. Kumar, P., Mahato, D.K., Kamle, M., Mohanta, T.K., and Kang, S.G. 2016. Aflatoxins: A global concern for food safety, human health and their management. Front. Microbiol. 7, 2170.PubMedGoogle Scholar
  26. Lan, N., Zhang, H., Hu, C., Wang, W., Calvo, A.M., Harris, S.D., Chen, S., and Li, S. 2014. Coordinated and distinct functions of velvet proteins in Fusarium verticillioides. Eukaryot. Cell 13, 909–918.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lee, J., Myong, K., Kim, J.E., Kim, H.K., Yun, S.H., and Lee, Y.W. 2012. FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum. Microbiology 158, 1723–1733.CrossRefPubMedGoogle Scholar
  28. Lee, M.K., Kwon, N.J., Lee, I.S., Jung, S., Kim, S.C., and Yu, J.H. 2016. Negative regulation and developmental competence in Aspergillus. Sci. Rep. 6, 28874.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lee, M.K., Park, H.S., Han, K.H., Hong, S.B., and Yu, J.H. 2017. High molecular weight genomic DNA mini-prep for filamentous fungi. Fungal Genet. Biol. 104, 1–5.CrossRefPubMedGoogle Scholar
  30. Low, S.Y., Dannemiller, K., Yao, M., Yamamoto, N., and Peccia, J. 2011. The allergenicity of Aspergillus fumigatus conidia is influenced by growth temperature. Fungal Biol. 115, 625–632.CrossRefPubMedGoogle Scholar
  31. Luk, K.C., Kobbe, B., and Townsend, J.M. 1977. Production of cyclopiazonic acid by Aspergillus flavus link. Appl. Environ. Microbiol. 33, 211–212.PubMedPubMedCentralGoogle Scholar
  32. Martin, J.F. 2017. Key role of LaeA and velvet complex proteins on expression of beta-lactam and PR-toxin genes in Penicillium chrysogenum: Cross-talk regulation of secondary metabolite pathways. J. Ind. Microbiol. Biotechnol. 44, 525–535.CrossRefPubMedGoogle Scholar
  33. Merhej, J., Urban, M., Dufresne, M., Hammond-Kosack, K.E., Richard-Forget, F., and Barreau, C. 2012. The velvet gene, fgve1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Mol. Plant Pathol. 13, 363–374.CrossRefPubMedGoogle Scholar
  34. Michailides, T. and Thomidis, T. 2007. First report of Aspergillus flavus causing fruit rots of peaches in Greece. Plant Pathol. 56, 352–352.CrossRefGoogle Scholar
  35. Ni, M. and Yu, J.H. 2007. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2, e970.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Park, H.S., Bayram, O., Braus, G.H., Kim, S.C., and Yu, J.H. 2012a. Characterization of the velvet regulators in Aspergillus fumigatus. Mol. Microbiol. 86, 937–953.CrossRefPubMedGoogle Scholar
  37. Park, H.S., Ni, M., Jeong, K.C., Kim, Y.H., and Yu, J.H. 2012b. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS One 7, e45935.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Park, H.S. and Yu, J.H. 2012. Multi-copy genetic screen in Aspergillus nidulans. Methods Mol. Biol. 944, 183–190.PubMedGoogle Scholar
  39. Park, H.S. and Yu, J.H. 2017. Velvet regulators in Aspergillus spp. Microbiol. Biotechnol. Lett. 44, 409–419.CrossRefGoogle Scholar
  40. Park, H.S., Yu, Y.M., Lee, M.K., Maeng, P.J., Kim, S.C., and Yu, J.H. 2015. Velvet-mediated repression of beta-glucan synthesis in Aspergillus nidulans spores. Sci. Rep. 5, 10199.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sarikaya Bayram, O., Bayram, O., Valerius, O., Park, H.S., Irniger, S., Gerke, J., Ni, M., Han, K.H., Yu, J.H., and Braus, G.H. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet. 6, e1001226.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Veiga, T., Nijland, J.G., Driessen, A.J., Bovenberg, R.A., Touw, H., van den Berg, M.A., Pronk, J.T., and Daran, J.M. 2012. Impact of velvet complex on transcriptome and penicillin G production in glucose-limited chemostat cultures of a beta-lactam highproducing Penicillium chrysogenum strain. OMICS 16, 320–333.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Woloshuk, C.P. and Shim, W.B. 2013. Aflatoxins, fumonisins, and trichothecenes: A convergence of knowledge. FEMS Microbiol. Rev. 37, 94–109.CrossRefPubMedGoogle Scholar
  44. Wu, M.Y., Mead, M.E., Kim, S.C., Rokas, A., and Yu, J.H. 2017. WetA bridges cellular and chemical development in Aspergillus flavus. PLoS One 12, e0179571.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yu, J.H., Hamari, Z., Han, K.H., Seo, J.A., Reyes-Dominguez, Y., and Scazzocchio, C. 2004. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal. Genet. Biol. 41, 973–981.CrossRefPubMedGoogle Scholar
  46. Yu, J.H. and Keller, N. 2005. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytopathol. 43, 437–458.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Food Science and Biotechnology, Institute of Agricultural Science and TechnologyKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Departments of Bacteriology and GeneticsUniversity of WisconsinMadisonUSA
  3. 3.Department of Systems BiotechnologyKonkuk UniversitySeoulRepublic of Korea

Personalised recommendations