Journal of Microbiology

, Volume 56, Issue 8, pp 571–578 | Cite as

Biosynthesis of 2-amino-3-hydroxycyclopent-2-enone moiety of bafilomycin in Kitasatospora cheerisanensis KCTC2395

  • Nguyen Phan Kieu Hanh
  • Jae Yoon Hwang
  • Hye Ryeung Oh
  • Geum Jin Kim
  • Hyukjae Choi
  • Doo Hyun NamEmail author


Bafilomycins produced by Kitasatospora cheerisanensis KCTC- 2395 belong to the 16-membered macrolactone family plecomacrolide antibiotics. Bafilomycin B1 contains 2-amino- 3-hydroxycyclopent-2-enone (C5N), a five membered ring, which gets condensed via an amide linkage to bafilomycin polyketide. To study the biosynthetic pathway of C5N during bafilomycin biosynthesis in K. cheerisanensis KCTC2395, we attempted the functional analysis of two putative genes, encoding 5-aminolevulinic acid synthase (ALAS) and acyl- CoA ligase (ACL). The amplified putative genes for ALAS and ACL were cloned into the E. coli expression vector pET- 32a(+) plasmid, following which the soluble recombinant ALAS and ACL proteins were purified through nickel-affinity column chromatography. Through HPLC analysis of the enzyme reaction mixture, we confirmed the products of putative ALAS and ACL reaction as 5-aminolevulinic acid (5-ALA) and 5-ALA-CoA, respectively. The optimal pH for the putative ALAS reaction was 7.5, and for putative ACL reaction was 7.0, as confirmed by the colorimetric assay. Furthermore, pyridoxal 5'-phosphate (PLP) was found to be an essential cofactor in the putative ALAS reaction, and ATP was a cofactor for the putative ACL catalysis. Finally, we also confirmed that the simultaneous treatment of putative ACL and putative ALAS enzymes resulted in the production of C5N compound from 5-ALA.


5-aminolevulinic acid synthase acyl-CoA ligase 2-amino-3-hydroxycyclopent-2-enone C5bafilomycin Kitasatospora cheerisanensis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_8267_MOESM1_ESM.pdf (271 kb)
Supplementary material, approximately 272 KB.


  1. Bowman, E.J., Siebers, A., and Altendorf, K. 1988. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant. Proc. Natl. Acad. Sci. USA 85, 7972–7976.CrossRefPubMedGoogle Scholar
  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248–254.Google Scholar
  3. Burnham, B.F. 1970. Delta-aminolevulinic acid synthase (R. spheroides). pp. 195–200. In Tubor, H. and Tubor, C.W. (eds.), Methods in enzymology, vol. 17A, Academic press, NY. USA.CrossRefGoogle Scholar
  4. Carr, G., Williams, D.E., Díaz-Marrero, A.R., Patrick, B.O., Bottriell, H., Balgi, A.D., Donohue, E., Roberge, M., and Andersen, R.J. 2010. Bafilomycins produced in culture by Streptomyces spp. isolated from marine habitats are potent inhibitors of autophagy. J. Nat. Prod. 73, 422–427.CrossRefPubMedGoogle Scholar
  5. Charbonnier, F., Köhler, T., Pechère, J.C., and Ducruix, A. 2001. Overexpression, refolding, and purification of the histidine-tagged outer membrane efflux protein OprM of Pseudomonas aeruginosa. Protein Expr. Purif. 23, 121–127.CrossRefPubMedGoogle Scholar
  6. Choi, H.P., Hong, J.W., Rhee, K.H., and Sung, S.H. 2004. Cloning, expression, and characterization of 5-aminolevulinic acid synthase from Rhodopseudomonas palustris KUGB306. FEMS Microbiol. Lett. 236, 175–181.CrossRefPubMedGoogle Scholar
  7. Chung, Y.R., Kim, C.S., Mo, H.K., Son, D.Y., Nam, J.S., Chun, J., and Bae, K.S. 1999. Kitasatospora cheerisanensis sp. nov., a new species of the genus Kitasatospora that produces an antifungal agent. Int. J. Syst. Bacteriol. 49, 753–758.CrossRefPubMedGoogle Scholar
  8. Frändberg, E., Petersson, C., Lundgren, L.N., and Schnüre, J. 2000. Streptomyces halstedii K122 produces the antifungal compounds bafilomycin B1 and C1. Can. J. Microbiol. 46, 753–757.CrossRefPubMedGoogle Scholar
  9. Goetz, M.A., McCormick, P.A., Monaghan, R.L., and Ostlind, D.A. 1985. L-155,175: a new antiparasitic macrolide. Fermentation, isolation and structure. J. Antibiot. 38, 161–168.PubMedGoogle Scholar
  10. Gong, J., Kay, C.J., Barber, M.J., and Ferreira, G.C. 1996. Mutations at a glycine loop in aminolevulinate synthase affect pyridoxal phosphate cofactor binding and catalysis. Biochemistry 35, 14109–14117.CrossRefPubMedGoogle Scholar
  11. Hatfield, G.M., Woodard, R.W., and Son, J.K. 1992. Isolation and structure determination of new macrolide antibiotics. J. Nat. Prod. 55, 753–759.CrossRefPubMedGoogle Scholar
  12. Hunter, G.A. and Ferreira, G.C. 2011. Molecular enzymology of 5-aminolevulinate synthase, the gatekeeper of heme biosynthesis. Biochim. Biophys. Acta 1814, 1467–1473.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hwang, J.Y., Kim, H.S., Kim, S.H., Oh, H.R., and Nam, D.H. 2013. Organization and characterization of a biosynthetic gene cluster for bafilomycin from Streptomyces griseus DSM 2608. AMB Express 3, 24.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hwang, J.Y., Kim, S.H., Oh, H.R., Cho, Y.J., Chun, J., Chung, Y.R., and Nam, D.H. 2014. Draft genome sequence of Kitasatospora cheerisanensis KCTC 2395 producing plecomacrolide against phytopathogenic fungi. Genome Announc. 2, e00604–14.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hwang, J.Y., Kim, S.H., Oh, H.R., Kwon, E.J., and Nam, D.H. 2015. Analysis of a draft genome sequence of Kitasatospora cheerisanensis KCTC 2395 producing bafilomycin antibiotics. J. Microbiol. 53, 84–89.CrossRefPubMedGoogle Scholar
  16. Ichikawa, N., Oguchi, A., Ikeda, H., Ishikawa, J., Kitani, S., Eatanabe, Y., Nakmura, S., Katano., Y., Kishi, E., Sasagawa, M., et al. 2010. Genome sequence of Kitasatospora setae NBRC 14216T: An evolutionary snapshot of the family Streptomycetaceae. DNA Res. 17, 393–406.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. 2000. Practical Streptomyces genetics. The John Innes Foundation, Norwich, UK.Google Scholar
  18. Knops, J., Suomensaari, S., Leen, M., McConlogue, L., Seubert, P., and Sinha, S. 1995. Cell-type and amyloid precursor protein-type specific inhibition of Aβ release by bafilomycin A1, a selective inhibitor of vacuolar ATPases. J. Biol. Chem. 270, 2419–2422.CrossRefPubMedGoogle Scholar
  19. Kretschmer, A., Dorgerloh, M., Deeg, M., and Hagenmaier, H. 1985. The structures of novel insecticidal macrolides: bafilomycins D and E, and oxohygrolidin. Agric. Biol. Chem. 49, 2509–2511.Google Scholar
  20. Li, Z., Du, L., Zhang, W., Zhang, X., Jiang, Y., Liu, K., Men, P., Xu, H., Fortman, J.L., Sherman, D.H., et al. 2017. Complete elucidation of the late steps of bafilomycin biosynthesis in Streptomyces lohii. J. Biol. Chem. 292, 7095–7104.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lou, J., Wu, M., Yang, L., Lin, J., and Cen, P. 2014. High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. J. Zhejiang Univ. Sci. B 15, 491–499.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Moon, S., Hwang, W., Chung, Y.R., and Shin, J. 2003. New cytotoxic bafilomycin C1-amide produced by Kitasatospora cheerisanensis. J. Antibiot. 56, 856–861.CrossRefPubMedGoogle Scholar
  23. Morineau, G., Azoulay, M., and Frappier, F. 1989. Reaction of Ophthalaldehyde with amino acids and glutathione. J. Chromatogr. 467, 209–216.CrossRefPubMedGoogle Scholar
  24. Ndejouong, B.L.S.T., Sattler, I., Maier, A., Kelter, G., Menzel, K.D., Fiebig, H.H., and Hertweck, C. 2010. Hygrobafilomycin, a cytotoxic and antifungal macrolide bearing a unique monoalkylmaleic anhydride moiety, from Streptomyces varsoviensis. J. Antibiot. 63, 359–363.CrossRefGoogle Scholar
  25. Ohta, E., Ohta, S., Kubota, N.K., Suzuli, M., Ogawa, T., Yamasaki, A., and Ikegami, S. 2001. Micromonospolide A, a new macrolide from Micromonospora sp. Tetrahedron Lett. 42, 4179–4181.CrossRefGoogle Scholar
  26. Otoguro, K., Nakagawa, A., and Omura, S. 1988. Setamycin, a 16- membered macrolide antibiotic. Identification and nematoidal activity. J. Antibiot. 41, 250–252.CrossRefPubMedGoogle Scholar
  27. Petrícková, K., Chronáková, A., Zelenka, T., Chrudimský, T., Pospíšil, S., Petrícek, M., and Krištufek, V. 2015. Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques. Front. Microbiol. 6, 814.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Petrícková, M., Petrícková, K., Havlicek, L., and Felsberg, J. 2006. Occurrence of two 5-aminolevulinate biosynthetic pathways in Streptomyces nodosus subsp. asukaensis is linked with the production of asukamycin. J. Bacteriol. 188, 5113–5123.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sambrook, J. and Russell, D.W. 2001. Molecular cloning: A laboratory manual, 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., USA.Google Scholar
  30. Saurin, A.J., Hamllet, J., Clague, M.J., and Penington, R. 1996. Inhibition of mitogen-induced DNA synthesis by bafilomycin A1 in Swiss 3T3 fibrobasts. Biotechnol. J. 313, 65–69.Google Scholar
  31. Tan, D. and Ferreira, G.C. 1996. Active site of 5-aminolevulinate synthase resides at a subunit interface. Evidence from in vivo heterodimer formation. Biochemistry 35, 8934–8941.PubMedGoogle Scholar
  32. Vanek, Z., Mateju, J., and Curdova, E. 1991. Immunomodulators isolated from microorganisms. Folia Microbiol. 36, 99–111.CrossRefGoogle Scholar
  33. Wilton, J.H., Hokanson, G.C., and French, J.C. 1985. PD 118,576: a new antitumor macrolide antibiotic. J. Antibiot. 38, 1449–1452.CrossRefPubMedGoogle Scholar
  34. Werner, G., Hagenmaier, H., Albert, K., Kohlshorn, H., and Drautz, H. 1983. The structure of the bafilomycins, a new group of macrolide antibiotics. Tetrahedron Lett. 24, 5193–5196.CrossRefGoogle Scholar
  35. Werner, G., Hagenmaier, H., Drautz, H., Baumgartner, A., and Zähner, H. 1984. Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics production, isolation, chemical structure and biological activity. J. Antibiot. 37, 110–117.PubMedGoogle Scholar
  36. Zhang, W., Bolla, M.L., Kahne, D., and Walsh, C.T. 2010. A three enzyme pathway for 2-amino-3-hydroxycyclopent-2-enone formation and incorporation in natural product biosynthesis. J. Am. Chem. Soc. 132, 6402–6411.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhang, W., Fortman, J.L., Carlson, J.C., Yan, J., Liu, Y., Bai, F., Guan, W., Jia, J., Matainaho, T., Sherman, D.H., et al. 2013. Characterization of the bafilomycin gene cluster from Streptomyces lohii. Chembiochem 14, 301–306.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Nguyen Phan Kieu Hanh
    • 1
  • Jae Yoon Hwang
    • 1
  • Hye Ryeung Oh
    • 1
  • Geum Jin Kim
    • 1
  • Hyukjae Choi
    • 1
  • Doo Hyun Nam
    • 1
    Email author
  1. 1.College of PharmacyYeungnam UniversityGyoungsanRepublic of Korea

Personalised recommendations