Journal of Microbiology

, Volume 56, Issue 9, pp 683–689 | Cite as

Antiviral activity of Schizonepeta tenuifolia Briquet against noroviruses via induction of antiviral interferons

  • Yee Ching Ng
  • Ye Won Kim
  • Jeong-Su Lee
  • Sung Joon Lee
  • Moon Jung SongEmail author


Human noroviruses are the causative agents of non-bacterial gastroenteritis worldwide. The rapid onset and resolution of disease symptoms suggest that innate immune responses are critical for controlling norovirus infection; however, no effective antivirals are yet available. The present study was conducted to examine the antiviral activities of Schizonepeta tenuifolia Briquet extract (STE) against noroviruses. Treatment of human norovirus replicon-bearing HG23 cells with STE at 5 and 10 mg/ml concentrations resulted in the reduction in the viral RNA levels by 77.2% and 85.9%, respectively. STE had no cytotoxic effects on HG23 cells. Treatment of RAW 264.7 cells infected with murine norovirus 1 (MNV-1), a surrogate virus of human noroviruses, with STE at 10 and 20 µg/ml concentrations resulted in the reduction of viral replication by 58.5% and 84.9%, respectively. STE treatment induced the expression of mRNAs for type I and type II interferons in HG23 cells and upregulated the transcription of interferon-β in infected RAW 264.7 cells via increased phosphorylation of interferon regulatory factor 3, a critical transcription regulator for type I interferon production. These results suggest that STE inhibits norovirus replication through the induction of antiviral interferon production during virus replication and may serve as a candidate antiviral substance for treatment against noroviruses.


antiviral activity norovirus Schizonepeta tenuifolia Briquet (ST) natural phytochemicals interferons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldridge, M.T., Turula, H., and Wobus, C.E. 2016. Norovirus regulation by host and microbe. Trends Mol. Med. 22, 1047–1059.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bok, K. and Green, K.Y. 2012. Norovirus gastroenteritis in immunocompromised patients. N. Engl. J. Med. 367, 2126–2132.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Byun, M.W. 2014. Schizonepeta tenuifolia ethanol extract exerts antiinflammatory activity through the inhibition of TLR4 signaling in lipopolysaccharide-stimulated macrophage cells. J. Med. Food 17, 350–356.CrossRefPubMedGoogle Scholar
  4. Chang, K.O. and George, D.W. 2007. Interferons and ribavirin effectively inhibit Norwalk virus replication in replicon-bearing cells. J. Virol. 81, 12111–12118.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chang, K.O., Sosnovtsev, S.V., Belliot, G., King, A.D., and Green, K.Y. 2006. Stable expression of a Norwalk virus RNA replicon in a human hepatoma cell line. Virology 353, 463–473.CrossRefPubMedGoogle Scholar
  6. Changotra, H., Jia, Y., Moore, T.N., Liu, G., Kahan, S.M., Sosnovtsev, S.V., and Karst, S.M. 2009. Type I and type I interferons inhibit the translation of murine norovirus proteins. J. Virol. 83, 5683–5692.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen, S.G., Cheng, M.L., Chen, K.H., Horng, J.T., Liu, C.C., Wang, S.M., Sakurai, H., Leu, Y.L., Wang, S.D., and Ho, H.Y. 2017. Antiviral activities of Schizonepeta tenuifolia Briq. against enterovirus 71 in vitro and in vivo. Sci. Rep. 7, 935.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cho, H.J., Jeong, S.G., Park, J.E., Han, J.A., Kang, H.R., Lee, D., and Song, M.J. 2013. Antiviral activity of angelicin against gammaherpesviruses. Antiviral Res. 100, 75–83.CrossRefPubMedGoogle Scholar
  9. Chun, M.H., Kim, E.K., Lee, K.R., Jung, J.H., and Hong, J. 2010. Quality control of Schizonepeta tenuifolia Briq by solid-phase microextraction gas chromatography/mass spectrometry and principal component analysis. Microchem. J. 95, 25–31.CrossRefGoogle Scholar
  10. Doyle, A., Barataud, D., Gallay, A., Thiolet, J., Le, S.G., Kohli, E., and Vaillant, V. 2004. Norovirus foodborne outbreaks associated with the consumption of oysters from the Etang de Thau, France, Decembe 2002. Euro Surveill. 9, 24–26.CrossRefPubMedGoogle Scholar
  11. Estes, M.K., Prasad, B.V., and Atmar, R.L. 2006. Noroviruses everywhere: has something changed? Curr. Opin. Infect. Dis. 19, 467–474.CrossRefGoogle Scholar
  12. Fung, D. and Lau, C.B. 2002. Schizonepeta tenuifolia: chemistry, pharmacology, and clinical applications. J. Clin. Pharmacol. 42, 30–36.CrossRefPubMedGoogle Scholar
  13. Glass, R.I., Parashar, U.D., and Estes, M.K. 2009. Norovirus gastroenteritis. N. Engl. J. Med. 361, 1776–1785.CrossRefPubMedGoogle Scholar
  14. Green, K. 2013. Caliciviridae: the noroviruses, pp. 508–609. In Knipe, D.M., Howley, P.M., Cohen, J.I., Griffin, D.E., Lamb, R.A., and Martin, M.A. (eds.), Fields virology, 6th ed. Lippincott Williams & Wilkins, Philadelphia, PA,USA.Google Scholar
  15. Honda, K., Takaoka, A., and Taniguchi, T. 2006. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25, 349–360.CrossRefPubMedGoogle Scholar
  16. Hutson, A.M., Atmar, R.L., and Estes, M.K. 2004. Norovirus disease: changing epidemiology and host susceptibility factors. Trends Microbiol. 12, 279–287.CrossRefPubMedGoogle Scholar
  17. Hwang, S., Maloney, N.S., Bruinsma, M.W., Goel, G., Duan, E., Zhang, L., Shrestha, B., Diamond, M.S., Dani, A., Sosnovtsev, S.V., et al. 2012. Nondegradative role of Atg5-Atg12/Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe 11, 397–409.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F.B., Takeda, N., and Katayama, K. 2003. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J. Clin. Microbiol. 41, 1548–1557.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kang, H., Han, S.W., Hong, J.W., and Sohn, N.W. 2010. Suppression of tumour necrosis factor-α by Schizonepeta tenuifolia water extract via inhibition of IκBα degradation and Jun N-terminal kin ase/stress-activated protein kinase activation. J. Pharm. Pharmacol. 62, 1069–1076.CrossRefPubMedGoogle Scholar
  20. Karst, S.M., Wobus, C.E., Lay, M., Davidson, J., and Virgin, H.W. 2003. STAT1-dependent innate immunity to a Norwalk-like virus. Science 299, 1575–1578.CrossRefPubMedGoogle Scholar
  21. Kim, Y.H., Jang, S.J., Park, J.Y., Oh, J.H., Kim, G.S., Kim, T.S., Kwon, O.S., Han, J.S., and Jheong, W.H. 2011. Recovery and adsorption rate of murine norovirus using NanoCeram® filters. J. Bacteriol. Virol. 41, 55–61.CrossRefGoogle Scholar
  22. Kim, S. and Ko, G. 2012. Using propidium monoazide to distinguish between viable and nonviable bacteria, MS2 and murine norovirus. Lett. Appl. Microbiol. 55, 182–188.CrossRefPubMedGoogle Scholar
  23. Kim, Y.W., You, H.J., Lee, S., Kim, B., Kim, D.K., Choi, J.B., Kim, J.A., Lee, H.J., Joo, I.S., and Lee, J.S. 2017. Inactivation of norovirus by lemongrass essential oil using a norovirus surrogate system. J. Food Prot. 80, 1293–1302.CrossRefPubMedGoogle Scholar
  24. Kirby, A.J. and Schmidt, R.J. 1997. The antioxidant activity of Chinese herbs for eczema and of placebo herbs-I. J. Ethnopharmacol. 56, 103–108.CrossRefPubMedGoogle Scholar
  25. Koo, H.S., Lee, M.O., Ku, P.T., Hwang, S.J., Park, D.J., and Baik, H.S. 2016. Molecular epidemiology of norovirus in asymptomatic food handlers in Busan, Korea, and emergence of genotype GII. 17. J. Microbiol. 54, 686–694.CrossRefPubMedGoogle Scholar
  26. Ma, S.C., Du, J., But, P.P.H., Deng, X.L., Zhang, Y.W., Ooi, V.E.C., Xu, H.X., Lee, S.H.S., and Lee, S.F. 2002. Antiviral Chinese medicinal herbs against respiratory syncytial virus. J. Ethnopharmacol. 79, 205–211.CrossRefPubMedGoogle Scholar
  27. McCartney, S.A., Thackray, L.B., Gitlin, L., Gilfillan, S., Virgin IV, H.W., and Colonna, M. 2008. MDA-5 recognition of a murine norovirus. PLoS Pathog. 4, e1000108.CrossRefPubMedPubMedCentralGoogle Scholar
  28. McFadden, N., Bailey, D., Carrara, G., Benson, A., Chaudhry, Y., Shortland, A., Heeney, J., Yarovinsky, F., Simmonds, P., Macdonald, A., et al. 2011. Norovirus regulation of the innate immune response and apoptosis occurs via the product of the alternative open reading frame 4. PLoS Pathog. 7, e1002413.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mumphrey, S.M., Changotra, H., Moore, T.N., Heimann-Nichols, E.R., Wobus, C.E., Reilly, M.J., Moghadamfalahi, M., Shukla, D., and Karst, S.M. 2007. Murine norovirus 1 infection is associated with histopathological changes in immunocompetent hosts, but clinical disease is prevented by STAT1-dependent interferon responses. J. Virol. 81, 3251–3263.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ng, Y.C., Kim, Y.W., Ryu, S., Lee, A., Lee, J.S., and Song, M.J. 2017. Suppression of norovirus by natural phytochemicals from Aloe vera and Eriobotryae Folium. Food Control 73, 1362–1370.CrossRefGoogle Scholar
  31. Nice, T.J., Baldridge, M.T., McCune, B.T., Norman, J.M., Lazear, H.M., Artyomov, M., Diamond, M.S., and Virgin, H.W. 2015. Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity. Science 347, 269–273.CrossRefPubMedGoogle Scholar
  32. Park, I.K., Kim, L.S., Choi, I.H., Lee, Y.S., and Shin, S.C. 2006. Fumigant activity of plant essential oils and components from Schizonepeta tenuifolia against Lycoriella ingenua (Diptera: Sciaridae). J. Econ. Entomol. 99, 1717–1721.CrossRefPubMedGoogle Scholar
  33. Payne, D.C., Vinjé, J., Szilagyi, P.G., Edwards, K.M., Staat, M.A., Weinberg, G.A., Hall, C.B., Chappell, J., Bernstein, D.I., Curns, A.T., et al. 2013. Norovirus and medically attended gastroenteritis in USchildren. N. Engl. J. Med. 368, 1121–1130.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Roth, A.N. and Karst, S.M. 2016. Norovirus mechanisms of immune antagonism. Curr. Opin. Virol. 16, 24–30.CrossRefPubMedGoogle Scholar
  35. Thackray, L.B., Duan, E., Lazear, H.M., Kambal, A., Schreiber, R.D., Diamond, M.S., and Virgin, H.W. 2012. Critical role for interferon regulatory factor 3 (IRF-3) and IRF-7 in type I interferon- mediated control of murine norovirus replication. J. Virol. 86, 13515–13523.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wobus, C.E., Thackray, L.B., and Virgin, H.W. 2006. Murine norovirus: a model system to study norovirus biology and pathogenesis. J. Virol. 80, 5104–5112.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Yoneyama, M., Suhara, W., and Fujita, T. 2002. Control of IRF-3 activation by phosphorylation. J. Interferon. Cytokine Res. 22, 73–76.CrossRefPubMedGoogle Scholar
  38. Yoon, M.Y., Lee, H.J., Lee, B.B., Lee, S.M., Kim, J.Y., Kim, Y., Park, E., and Park, H.R. 2007. Protective effect of Schizonepeta tenuifolia Briquet extracts on oxidative DNA damage in human leucocytes and on hydrogen peroxide-induced cytotoxicity in PC12 cells. Food Sci. Biotechnol. 16, 858–862.Google Scholar
  39. Yu, S., Chen, Y., Zhang, L., Shan, M., Tang, Y., and Ding, A. 2011. Quantitative comparative analysis of the bio-active and toxic constituents of leaves and spikes of Schizonepeta tenuifolia at different harvesting times. Int. J. Mol. Sci. 12, 6635–6644.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zheng, D.P., Ando, T., Fankhauser, R.L., Beard, R.S., Glass, R.I., and Monroe, S.S. 2006. Norovirus classification and proposed strain nomenclature. Virology 346, 312–323.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Yee Ching Ng
    • 1
  • Ye Won Kim
    • 2
  • Jeong-Su Lee
    • 3
  • Sung Joon Lee
    • 2
  • Moon Jung Song
    • 1
    Email author
  1. 1.Virus-Host Interactions Laboratory, Department of Biosystems and Biotechnology, Division of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulRepublic of Korea
  2. 2.Department of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulRepublic of Korea
  3. 3.Food Microbiology Division, Food Safety Evaluation DepartmentNational Institute of Food and Drug Safety EvaluationOsongRepublic of Korea

Personalised recommendations