Journal of Microbiology

, Volume 56, Issue 6, pp 393–398 | Cite as

Paenibacillus albilobatus sp. nov., isolated from acidic soil on Jeju Island

  • Jae-Won Lee
  • Ye-Eun Kim
  • Myung-Suk Kang
  • Ki-Eun Lee
  • Eun-Young Lee
  • Soo-Je ParkEmail author
Microbial Systematics and Evolutionary Microbiology


A rod-shaped, white color colony with lobate architectures, strain h2T was isolated from a moderately acidic soil on Jeju Island, Republic of Korea. Comparative analysis of the 16S rRNA gene sequence showed that the strain h2T is closely related to Paenibacillus relictisesami DSM 25385T (97.4%, 16S rRNA gene sequence similarity), Paenibacillus azoreducens KACC 11244T (97.2%), and Paenibacillus cookii LMG 18419T (97.0%). DNA-DNA hybridization indicated that the strain h2T has relatively low levels of DNA-DNA relatedness with respect to P. relictisesami DSM 25385T (10.2%) and P. azoreducens KACC 11244T (13.7%). Additionally, the genomic DNA G + C content of h2T is 51.5 mol%. The isolated strain grew at pH 4.0–9.0 (optimum, pH 6.0–7.0) and 0–5% (w/v) NaCl (optimum, 0%) and a temperature of 15–45°C (optimum 35°C). The quinones in the strain are MK-6 and MK-7, and the predominant fatty acid is C15:0 anteiso (32.1%) followed by C17:0 anteiso (26.5%), and C16:0 iso (21.0%). Based on its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain h2T is proposed as a novel species in the genus Paenibacillus, for which the name Paenibacillus albilobatus sp. nov. is proposed (= KCCM 43269T = JCM 32395T = LMG 30408T). The type strain of Paenibacillus albilobatus is h2T.


Paenibacillus albilobatus sp. nov. Jeju Island soil polyphasic novel species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_8158_MOESM1_ESM.pdf (205 kb)
Supplementary material, approximately 204 KB.


  1. Ash, C., Farrow, J.A., Dorsch, M., Stackebrandt, E., and Collins, M.D. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41, 343–346.CrossRefPubMedGoogle Scholar
  2. Ash, C., Priest, F.G., and Collins, M.D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253–260.CrossRefPubMedGoogle Scholar
  3. Bae, J.Y., Kim, K.Y., Kim, J.H., Lee, K., Cho, J.C., and Cha, C.J. 2010. Paenibacillus aestuarii sp. nov., isolated from an estuarine wetland. Int. J. Syst. Evol. Microbiol. 60, 644–647.CrossRefPubMedGoogle Scholar
  4. Berge, O., Guinebretiere, M.H., Achouak, W., Normand, P., and Heulin, T. 2002. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int. J. Syst. Evol. Microbiol. 52, 607–616.CrossRefPubMedGoogle Scholar
  5. Ezaki, T., Adnan, S., and Miyake, M. 1990. [Quantitative microdilution plate hybridization to determine genetic relatedness among bacterial strains]. Nihon Saikingaku Zasshi 45, 851–857.CrossRefPubMedGoogle Scholar
  6. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefPubMedGoogle Scholar
  7. Fischer, M. and Thatte, B. 2010. Revisiting an equivalence between maximum parsimony and maximum likelihood methods in phylogenetics. Bull. Math. Biol. 72, 208–220.CrossRefPubMedGoogle Scholar
  8. González, J.M. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G + C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.CrossRefPubMedGoogle Scholar
  9. Hu, H.Y., Fujie, K., and Urano, K. 1999. Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J. Biosci. Bioeng. 87, 378–382.CrossRefPubMedGoogle Scholar
  10. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefPubMedGoogle Scholar
  11. Koh, H.W., Hong, H., Min, U.G., Kang, M.S., Kim, S.G., Na, J.G., Rhee, S.K., and Park, S.J. 2015a. Rhodanobacter aciditrophus sp. nov., an acidophilic bacterium isolated from mine wastewater. Int. J. Syst. Evol. Microbiol. 65, 4574–4579.CrossRefPubMedGoogle Scholar
  12. Koh, H.W., Rani, S., Kim, S.J., Moon, E., Nam, S.W., Rhee, S.K., and Park, S.J. 2017. Halomonas aestuarii sp. nov., a moderately halophilic bacterium isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 67, 4298–4303.CrossRefPubMedGoogle Scholar
  13. Koh, H.W., Song, H.S., Song, U., Yim, K.J., Roh, S.W., and Park, S.J. 2015b. Halolamina sediminis sp. nov., an extremely halophilic archaeon isolated from solar salt. Int. J. Syst. Evol. Microbiol. 65, 2479–2484.CrossRefPubMedGoogle Scholar
  14. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Logan, N.A., De Clerck, E., Lebbe, L., Verhelst, A., Goris, J., Forsyth, G., Rodriguez-Diaz, M., Heyndrickx, M., and De Vos, P. 2004. Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov., from Antarctic volcanic soils and a gelatin-processing plant. Int. J. Syst. Evol. Microbiol. 54, 1071–1076.CrossRefPubMedGoogle Scholar
  16. Meehan, C., Bjourson, A.J., and McMullan, G. 2001. Paenibacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial wastewater. Int. J. Syst. Evol. Microbiol. 51, 1681–1685.CrossRefPubMedGoogle Scholar
  17. Menendez, E., Flores-Felix, J.D., Mulas, R., Andres, F.G., Fernandez-Pascual, M., Peix, A., and Velazquez, E. 2017. Paenibacillus tritici sp. nov., isolated from wheat roots. Int. J. Syst. Evol. Microbiol. 67, 2312–2316.CrossRefPubMedGoogle Scholar
  18. Morales, P., Sendra, J.M., and Perez-Gonzalez, J.A. 1995. Purification and characterization of an arabinofuranosidase from Bacillus polymyxa expressed in Bacillus subtilis. Appl. Microbiol. Biotechnol. 44, 112–117.CrossRefPubMedGoogle Scholar
  19. Ottow, J.C. 1972. Pectinolytic-, ureolytic-, and lecithinolytic activity as a diagnostic aid in the identification of species classified in the genus Bacillus Cohn. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. 127, 301–312.PubMedGoogle Scholar
  20. Park, S.J., Cha, I.T., Kim, S.J., Shin, K.S., Hong, Y., Roh, D.H., and Rhee, S.K. 2012. Salinisphaera orenii sp. nov., isolated from a solar saltern. Int. J. Syst. Evol. Microbiol. 62, 1877–1883.CrossRefPubMedGoogle Scholar
  21. Rani, S., Koh, H.W., Kim, H., Rhee, S.K., and Park, S.J. 2017. Marinobacter salinus sp. nov., a moderately halophilic bacterium isolated from a tidal flat environment. Int. J. Syst. Evol. Microbiol. 67, 205–211.CrossRefPubMedGoogle Scholar
  22. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  23. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K., and Komagata, K. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47, 289–298.CrossRefPubMedGoogle Scholar
  24. Shimoyama, T., Johari, N.B., Tsuruya, A., Nair, A., and Nakayama, T. 2014. Paenibacillus relictisesami sp. nov., isolated from sesame oil cake. Int. J. Syst. Evol. Microbiol. 64, 1534–1539.CrossRefPubMedGoogle Scholar
  25. Tang, Q.Y., Yang, N., Wang, J., Xie, Y.Q., Ren, B., Zhou, Y.G., Gu, M.Y., Mao, J., Li, W.J., Shi, Y.H., et al. 2011. Paenibacillus algorifonticola sp. nov., isolated from a cold spring. Int. J. Syst. Evol. Microbiol. 61, 2167–2172.CrossRefPubMedGoogle Scholar
  26. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wang, X.M., Ma, S., Yang, S.Y., Peng, R., Zheng, Y., and Yang, H. 2016. Paenibacillus nasutitermitis sp. nov., isolated from a termite gut. Int. J. Syst. Evol. Microbiol. 66, 901–905.CrossRefPubMedGoogle Scholar
  28. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Xie, J.B., Du, Z., Bai, L., Tian, C., Zhang, Y., Xie, J.Y., Wang, T., Liu, X., Chen, X., Cheng, Q., et al. 2014. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. PLoS Genet. 10, e1004231.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F.O., Ludwig, W., Schleifer, K.H., Whitman, W.B., Euzeby, J., Amann, R., and Rossello-Mora, R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645.CrossRefPubMedGoogle Scholar
  31. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yoon, J.H., Kang, S.J., Yeo, S.H., and Oh, T.K. 2005. Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int. J. Syst. Evol. Microbiol. 55, 2339–2344.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Jae-Won Lee
    • 1
  • Ye-Eun Kim
    • 1
  • Myung-Suk Kang
    • 2
  • Ki-Eun Lee
    • 3
  • Eun-Young Lee
    • 3
  • Soo-Je Park
    • 1
    Email author
  1. 1.Department of BiologyJeju National UniversityJejuRepublic of Korea
  2. 2.Biological Resources Utilization DepartmentNational Institute of Biological ResourcesIncheonRepublic of Korea
  3. 3.Microorganism Resources DivisionNational Institute of Biological ResourcesIncheonRepublic of Korea

Personalised recommendations