Journal of Microbiology

, Volume 56, Issue 3, pp 189–198 | Cite as

Current understanding of microbiota- and dietary-therapies for treating inflammatory bowel disease

  • Taekil Eom
  • Yong Sung Kim
  • Chang Hwan Choi
  • Michael J. Sadowsky
  • Tatsuya UnnoEmail author
Review Human Microbiomes and Probiotics


Inflammatory bowel disease (IBD) is a result of chronic inflammation caused, in some part, by dysbiosis of intestinal microbiota, mainly commensal bacteria. Gut dysbiosis can be caused by multiple factors, including abnormal immune responses which might be related to genetic susceptibility, infection, western dietary habits, and administration of antibiotics. Consequently, the disease itself is characterized as having multiple causes, etiologies, and severities. Recent studies have identified >200 IBD risk loci in the host. It has been postulated that gut microbiota interact with these risk loci resulting in dysbiosis, and this subsequently leads to the development of IBD. Typical gut microbiota in IBD patients are characterized with decrease in species richness and many of the commensal, and beneficial, fecal bacteria such as Firmicutes and Bacteroidetes and an increase or bloom of Proteobacteria. However, at this time, cause and effect relationships have not been rigorously established. While treatments of IBD usually includes medications such as corticosteroids, 5-aminosalicylates, antibiotics, immunomodulators, and anti-TNF agents, restoration of gut dysbiosis seems to be a safer and more sustainable approach. Bacteriotherapies (now called microbiota therapies) and dietary interventions are effective way to modulate gut microbiota. In this review, we summarize factors involved in IBD and studies attempted to treat IBD with probiotics. We also discuss the potential use of microbiota therapies as one promising approach in treating IBD. As therapies based on the modulation of gut microbiota becomes more common, future studies should include individual gut microbiota differences to develop personalized therapy for IBD.


dysbiosis gut microbiota inflammatory bowel disease probiotics prebiotics short chain fatty acids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, B.P. and Quigley, E.M.M. 2017. Probiotics in inflammatory bowel disease. Gastroenterol. Clin. North Am. 46, 769–782.PubMedCrossRefGoogle Scholar
  2. Ahmad, R., Chaturvedi, R., Olivares-Villagomez, D., Habib, T., Asim, M., Shivesh, P., Polk, D.B., Wilson, K.T., Washington, M.K., Van Kaer, L., et al. 2014. Targeted colonic claudin-2 expression renders resistance to epithelial injury, induces immune suppression, and protects from colitis. Mucosal Immunol. 7, 1340–1353.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ale, M.T., Mikkelsen, J.D., and Meyer, A.S. 2011. Important determinants for fucoidan bioactivity: a critical review of structurefunction relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs 9, 2106–2130.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ananthakrishnan, A.N. 2015. Environmental risk factors for inflammatory bowel diseases: a review. Dig. Dis. Sci. 60, 290–298.PubMedCrossRefGoogle Scholar
  5. Andrianifahanana, M., Moniaux, N., and Batra, S.K. 2006. Regulation of mucin expression: mechanistic aspects and implications for cancer and inflammatory diseases. Biochim. Biophys. Acta 1765, 189–222.PubMedGoogle Scholar
  6. Biagioli, M., Cipriani, S., Carino, A., Distrutti, E., Marchianò, S., and Fiorucci, S. 2017. Variability in industrial production affects probiotics activity: identification of batches of probiotic VSL#3 that increases intestinal permeability and worsens colitis in rodents. Gastroenterology 152, S969.CrossRefGoogle Scholar
  7. Boden, E.K. and Snapper, S.B. 2008. Regulatory T cells in inflammatory bowel disease. Curr. Opin. Gastroenterol. 24, 733–741.PubMedCrossRefGoogle Scholar
  8. Casellas, F., Borruel, N., Torrejon, A., Varela, E., Antolin, M., Guarner, F., and Malagelada, J.R. 2007. Oral oligofructose-enriched inulin supplementation in acute ulcerative colitis is well tolerated and associated with lowered faecal calprotectin. Aliment. Pharmacol. Ther. 25, 1061–1067.PubMedCrossRefGoogle Scholar
  9. Cherbut, C. 2002. Inulin and oligofructose in the dietary fibre concept. Br. J. Nutr. 87 Suppl 2, S159–S162.PubMedCrossRefGoogle Scholar
  10. Cinque, B., La Torre, C., Lombardi, F., Palumbo, P., Van der Rest, M., and Cifone, M.G. 2016. Production conditions affect the in vitro anti-tumoral effects of a high concentration multi-strain probiotic preparation. PLoS One 11, e0163216.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cloetens, L., Ulmius, M., Johansson-Persson, A., Akesson, B., and Onning, G. 2012. Role of dietary beta-glucans in the prevention of the metabolic syndrome. Nutr. Rev. 70, 444–458.PubMedCrossRefGoogle Scholar
  12. Costello, S.P., Soo, W., Bryant, R.V., Jairath, V., Hart, A.L., and Andrews, J.M. 2017. Systematic review with meta-analysis: faecal microbiota transplantation for the induction of remission for active ulcerative colitis. Aliment. Pharmacol. Ther. 46, 213–224.PubMedCrossRefGoogle Scholar
  13. Daou, C. and Zhang, H. 2012. Oat beta-glucan: Its role in health promotion and prevention of diseases. Compr. Rev. Food Sci. F. 11, 355–365.CrossRefGoogle Scholar
  14. Derwa, Y., Gracie, D.J., Hamlin, P.J., and Ford, A.C. 2017. Systematic review with meta-analysis: the efficacy of probiotics in inflamma tory bowel disease. Aliment. Pharmacol. Ther. 46, 389–400.PubMedCrossRefGoogle Scholar
  15. Di Sabatino, A., Biancheri, P., Rovedatti, L., MacDonald, T.T., and Corazza, G.R. 2012. New pathogenic paradigms in inflammatory bowel disease. Inflamm. Bowel Dis. 18, 368–371.PubMedCrossRefGoogle Scholar
  16. Dos Reis, S.A., da Conceicao, L.L., Siqueira, N.P., Rosa, D.D., da Silva, L.L., and Peluzio, M.D. 2017. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr. Res. 37, 1–19.PubMedCrossRefGoogle Scholar
  17. Ewaschuk, J.B., Diaz, H., Meddings, L., Diederichs, B., Dmytrash, A., Backer, J., Looijer-van Langen, M., and Madsen, K.L. 2008. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G1025–G1034.PubMedCrossRefGoogle Scholar
  18. Flamm, G., Glinsmann, W., Kritchevsky, D., Prosky, L., and Roberfroid, M. 2001. Inulin and oligofructose as dietary fiber: a review of the evidence. Crit. Rev. Food Sci. Nutr. 41, 353–362.PubMedCrossRefGoogle Scholar
  19. Forland, D.T., Johnson, E., Saetre, L., Lyberg, T., Lygren, I., and Hetland, G. 2011. Effect of an extract based on the medicinal mushroom Agaricus blazei murill on expression of cytokines and calprotectin in patients with ulcerative colitis and Crohn’s disease. Scand. J. Immunol. 73, 66–75.PubMedCrossRefGoogle Scholar
  20. Frolkis, A.D., Dykeman, J., Negron, M.E., Debruyn, J., Jette, N., Fiest, K.M., Frolkis, T., Barkema, H.W., Rioux, K.P., Panaccione, R., et al. 2013. Risk of surgery for inflammatory bowel diseases has decreased over time: a systematic review and meta-analysis of population-based studies. Gastroenterology 145, 996–1006.PubMedCrossRefGoogle Scholar
  21. Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J.M., Topping, D.L., Suzuki, T., et al. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547.PubMedCrossRefGoogle Scholar
  22. Fung, K.Y., Cosgrove, L., Lockett, T., Head, R., and Topping, D.L. 2012. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br. J. Nutr. 108, 820–831.PubMedCrossRefGoogle Scholar
  23. Gaffen, S.L., Jain, R., Garg, A.V., and Cua, D.J. 2014. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Galvez, J. 2014. Role of Th17 cells in the pathogenesis of human IBD. ISRN Inflamm. 2014, 928461.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gevers, D., Kugathasan, S., Denson, L.A., Vazquez-Baeza, Y., Van Treuren, W., Ren, B., Schwager, E., Knights, D., Song, S.J., Yassour, M., et al. 2014. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gibson, G.R. and Roberfroid, M.B. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412.PubMedGoogle Scholar
  27. Gionchetti, P., Rizzello, F., Helwig, U., Venturi, A., Lammers, K.M., Brigidi, P., Vitali, B., Poggioli, G., Miglioli, M., and Campieri, M. 2003. Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial. Gastroenterology 124, 1202–1209.PubMedCrossRefGoogle Scholar
  28. Goodrich, J.K., Waters, J.L., Poole, A.C., Sutter, J.L., Koren, O., Blekhman, R., Beaumont, M., Van Treuren, W., Knight, R., Bell, J.T., et al. 2014. Human genetics shape the gut microbiome. Cell 159, 789–799.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gopalakrishnan, A., Clinthorne, J.F., Rondini, E.A., McCaskey, S.J., Gurzell, E.A., Langohr, I.M., Gardner, E.M., and Fenton, J.I. 2012. Supplementation with galacto-oligosaccharides increases the percentage of NK cells and reduces colitis severity in Smad3-deficient mice. J. Nutr. 142, 1336–1342.PubMedCrossRefGoogle Scholar
  30. Goto, Y., Obata, T., Kunisawa, J., Sato, S., Ivanov, I.I., Lamichhane, A., Takeyama, N., Kamioka, M., Sakamoto, M., Matsuki, T., et al. 2014. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Halfvarson, J., Brislawn, C.J., Lamendella, R., Vazquez-Baeza, Y., Walters, W.A., Bramer, L.M., D’Amato, M., Bonfiglio, F., McDonald, D., Gonzalez, A., et al. 2017. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Holma, R., Juvonen, P., Asmawi, M.Z., Vapaatalo, H., and Korpela, R. 2002. Galacto-oligosaccharides stimulate the growth of bifidobacteria but fail to attenuate inflammation in experimental colitis in rats. Scand. J. Gastroenterol. 37, 1042–1047.PubMedCrossRefGoogle Scholar
  33. Hugot, J.P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J.P., Belaiche, J., Almer, S., Tysk, C., O’Morain, C.A., Gassull, M., et al. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411, 599–603.PubMedCrossRefGoogle Scholar
  34. Imhann, F., Vich Vila, A., Bonder, M.J., Fu, J., Gevers, D., Visschedijk, M.C., Spekhorst, L.M., Alberts, R., Franke, L., van Dullemen, H.M., et al. 2018. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67, 108–119.PubMedCrossRefGoogle Scholar
  35. Isene, R., Bernklev, T., Hoie, O., Munkholm, P., Tsianos, E., Stockbrugger, R., Odes, S., Palm, O., Smastuen, M., Moum, B., et al. 2015. Extraintestinal manifestations in Crohn’s disease and ulcerative colitis: results from a prospective, population-based European inception cohort. Scand. J. Gastroenterol. 50, 300–305.PubMedCrossRefGoogle Scholar
  36. Jensen, H., Dromtorp, S.M., Axelsson, L., and Grimmer, S. 2015. Immunomodulation of monocytes by probiotic and selected lactic acid bacteria. Probiotics Antimicrob. Proteins 7, 14–23.PubMedCrossRefGoogle Scholar
  37. Johnston, R.D. and Logan, R.F. 2008. What is the peak age for onset of IBD? Inflamm. Bowel Dis. 14 Suppl 2, S4–S5.CrossRefGoogle Scholar
  38. Kamada, N., Chen, G.Y., Inohara, N., and Nunez, G. 2013. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kaser, A., Martinez-Naves, E., and Blumberg, R.S. 2010. Endoplasmic reticulum stress: implications for inflammatory bowel disease pathogenesis. Curr. Opin. Gastroenterol. 26, 318–326.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Khoruts, A., Rank, K.M., Newman, K.M., Viskocil, K., Vaughn, B.P., Hamilton, M.J., and Sadowsky, M.J. 2016. Inflammatory bowel disease affects the outcome of fecal microbiota transplantation for recurrent Clostridium difficile infection. Clin. Gastroenterol. Hepatol. 14, 1433–1438.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kim, C.H. 2009. FOXP3 and its role in the immune system. Adv. Exp. Med. Biol. 665, 17–29.PubMedCrossRefGoogle Scholar
  42. Kilinç, B., Cirik, S., Turan, G., Tekogul, H., and Koru, E. 2013. Seaweed for food and industrial applications, In Muzzalupo, I. (ed.), Food Industry. InTech, DOI: 10.5772/53172.Google Scholar
  43. Kolmeder, C.A., Salojarvi, J., Ritari, J., de Been, M., Raes, J., Falony, G., Vieira-Silva, S., Kekkonen, R.A., Corthals, G.L., Palva, A., et al. 2016. Faecal metaproteomic analysis reveals a personalized and stable functional microbiome and limited effects of a probiotic intervention in adults. PLoS One 11, e0153294.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kravtsov, E.G., Yermolayev, A.V., Anokhina, I.V., Yashina, N.V., Chesnokova, V.L., and Dalin, M.V. 2008. Adhesion characteristics of lactobacillus is a criterion of the probiotic choice. Bull. Exp. Biol. Med. 145, 232–234.PubMedCrossRefGoogle Scholar
  45. Kristensen, N.B., Bryrup, T., Allin, K.H., Nielsen, T., Hansen, T.H., and Pedersen, O. 2016. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 8, 52.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Landy, J., Ronde, E., English, N., Clark, S.K., Hart, A.L., Knight, S.C., Ciclitira, P.J., and Al-Hassi, H.O. 2016. Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World J. Gastroenterol. 22, 3117–3126.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lavi, I., Levinson, D., Peri, I., Nimri, L., Hadar, Y., and Schwartz, B. 2010. Orally administered glucans from the edible mushroom Pleurotus pulmonarius reduce acute inflammation in dextran sulfate sodium-induced experimental colitis. Br. J. Nutr. 103, 393–402.PubMedCrossRefGoogle Scholar
  48. Lean, Q.Y., Eri, R.D., Fitton, J.H., Patel, R.P., and Gueven, N. 2015. Fucoidan extracts ameliorate acute colitis. PLoS One 10, e0128453.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Li, H., Limenitakis, J.P., Fuhrer, T., Geuking, M.B., Lawson, M.A., Wyss, M., Brugiroux, S., Keller, I., Macpherson, J.A., Rupp, S., et al. 2015. The outer mucus layer hosts a distinct intestinal microbial niche. Nat. Commun. 6, 8292.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Licht, T.R., Hansen, M., Poulsen, M., and Dragsted, L.O. 2006. Die tary carbohydrate source influences molecular fingerprints of the rat faecal microbiota. BMC Microbiol. 6, 98.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Liu, T., Zhang, L., Joo, D., and Sun, S.C. 2017. NF-kappaB signaling in inflammation. Signal. Transduct. Target. Ther. 2, 17023.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Losurdo, G., Iannone, A., Contaldo, A., Ierardi, E., Di Leo, A., and Principi, M. 2015. Escherichia coli nissle 1917 in ulcerative colitis treatment: systematic review and meta-analysis. J. Gastrointestin. Liver Dis. 24, 499–505.PubMedGoogle Scholar
  53. Luo, Y., de Lange, K.M., Jostins, L., Moutsianas, L., Randall, J., Kennedy, N.A., Lamb, C.A., McCarthy, S., Ahmad, T., Edwards, C., et al. 2017. Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat. Genet. 49, 186–192.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Maldonado-Gomez, M.X., Martinez, I., Bottacini, F., O’Callaghan, A., Ventura, M., van Sinderen, D., Hillmann, B., Vangay, P., Knights, D., Hutkins, R.W., et al. 2016. Stable engraftment of Bifidobacterium iongum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20, 515–526.PubMedCrossRefGoogle Scholar
  55. Marcobal, A., Southwick, A.M., Earle, K.A., and Sonnenburg, J.L. 2013. A refined palate: bacterial consumption of host glycans in the gut. Glycobiology 23, 1038–1046.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Marteau, P. and Flourie, B. 2001. Tolerance to low-digestible carbohydrates: symptomatology and methods. Br. J. Nutr. 85 Suppl 1, S17–S21.PubMedCrossRefGoogle Scholar
  57. Maslowski, K.M. and Mackay, C.R. 2011. Diet, gut microbiota and immune responses. Nat. Immunol. 12, 5–9.PubMedCrossRefGoogle Scholar
  58. Matsumoto, S., Nagaoka, M., Hara, T., Kimura-Takagi, I., Mistuyama, K., and Ueyama, S. 2004. Fucoidan derived from Cladosiphon okamuranus Tokida ameliorates murine chronic colitis through the down-regulation of interleukin-6 production on colonic epithelial cells. Clin. Exp. Immunol. 136, 432–439.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Mazurak, N., Broelz, E., Storr, M., and Enck, P. 2015. Probiotic therapy of the irritable bowel syndrome: Why is the evidence still poor and what can be done about it? J. Neurogastroenterol. Motil. 21, 471–485.CrossRefGoogle Scholar
  60. McIlroy, J., Ianiro, G., Mukhopadhya, I., Hansen, R., and Hold, G.L. 2018. Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment. Pharmacol. Ther. 47, 26–42.PubMedCrossRefGoogle Scholar
  61. Mimura, T., Rizzello, F., Helwig, U., Poggioli, G., Schreiber, S., Talbot, I.C., Nicholls, R.J., Gionchetti, P., Campieri, M., and Kamm, M.A. 2004. Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut 53, 108–114.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Molodecky, N.A., Soon, I.S., Rabi, D.M., Ghali, W.A., Ferris, M., Chernoff, G., Benchimol, E.I., Panaccione, R., Ghosh, S., Barkema, H.W., et al. 2012. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54 e42; quiz e30.PubMedCrossRefGoogle Scholar
  63. Mussatto, S.I. and Mancilha, I.M. 2007. Non-digestible oligosaccharides: A review. Carbohydrate Polymers 68, 587–597.CrossRefGoogle Scholar
  64. Najafzadeh, M., Reynolds, P.D., Baumgartner, A., Jerwood, D., and Anderson, D. 2007. Chaga mushroom extract inhibits oxidative DNA damage in lymphocytes of patients with inflammatory bowel disease. Biofactors 31, 191–200.PubMedCrossRefGoogle Scholar
  65. Ng, K.M., Ferreyra, J.A., Higginbottom, S.K., Lynch, J.B., Kashyap, P.C., Gopinath, S., Naidu, N., Choudhury, B., Weimer, B.C., Monack, D.M., et al. 2013a. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ng, S.C., Tang, W., Ching, J.Y., Wong, M., Chow, C.M., Hui, A.J., Wong, T.C., Leung, V.K., Tsang, S.W., Yu, H.H., et al. 2013b. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn’s and colitis epidemiology study. Gastroenterology 145, 158–165.e2.PubMedCrossRefGoogle Scholar
  67. O’Shea, C.J., O’Doherty, J.V., Callanan, J.J., Doyle, D., Thornton, K., and Sweeney, T. 2016. The effect of algal polysaccharides laminarin and fucoidan on colonic pathology, cytokine gene expression and Enterobacteriaceae in a dextran sodium sulfate-challenged porcine model. J. Nutr. Sci. 5, e15.PubMedPubMedCentralCrossRefGoogle Scholar
  68. O’Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P.G., Hughes, H., and Gardiner, G.E. 2010. Prebiotics from marine macroalgae for human and animal health applications. Mar. Drugs 8, 2038–2064.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ogura, Y., Bonen, D.K., Inohara, N., Nicolae, D.L., Chen, F.F., Ramos, R., Britton, H., Moran, T., Karaliuskas, R., Duerr, R.H., et al. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411, 603–606.PubMedCrossRefGoogle Scholar
  70. Okolie, C.L., Rajendran, S.R.C.K., Udenigwe, C.C., Aryee, A.N.A., and Mason, B. 2017. Prospects of brown seaweed polysaccharides (BSP) as prebiotics and potential immunomodulators. J. Food Biochem. 41, e12392.CrossRefGoogle Scholar
  71. Ouwerkerk, J.P., de Vos, W.M., and Belzer, C. 2013. Glycobiome: bacteria and mucus at the epithelial interface. Best Pract. Res. Clin. Gastroenterol. 27, 25–38.PubMedCrossRefGoogle Scholar
  72. Pacheco, A.R., Barile, D., Underwood, M.A., and Mills, D.A. 2015. The impact of the milk glycobiome on the neonate gut microbiota. Annu. Rev. Anim. Biosci. 3, 419–445.PubMedCrossRefGoogle Scholar
  73. Packey, C.D. and Sartor, R.B. 2008. Interplay of commensal and pathogenic bacteria, genetic mutations, and immunoregulatory defects in the pathogenesis of inflammatory bowel diseases. J. Intern. Med. 263, 597–606.PubMedCrossRefGoogle Scholar
  74. Piche, T., des Varannes, S.B., Sacher-Huvelin, S., Holst, J.J., Cuber, J.C., and Galmiche, J.P. 2003. Colonic fermentation influences lower esophageal sphincter function in gastroesophageal reflux disease. Gastroenterology 124, 894–902.PubMedCrossRefGoogle Scholar
  75. Pickard, J.M., Maurice, C.F., Kinnebrew, M.A., Abt, M.C., Schenten, D., Golovkina, T.V., Bogatyrev, S.R., Ismagilov, R.F., Pamer, E.G., Turnbaugh, P.J., et al. 2014. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514, 638–641.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pigneur, B. and Sokol, H. 2016. Fecal microbiota transplantation in inflammatory bowel disease: the quest for the holy grail. Mucosal. Immunol. 9, 1360–1365.PubMedCrossRefGoogle Scholar
  77. Powrie, F., Leach, M.W., Mauze, S., Menon, S., Caddle, L.B., and Coffman, R.L. 1994. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1, 553–562.PubMedCrossRefGoogle Scholar
  78. Rios-Covian, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., de Los Reyes-Gavilan, C.G., and Salazar, N. 2016. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 7, 185.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rivero-Urgell, M. and Santamaria-Orleans, A. 2001. Oligosaccharides: application in infant food. Early Hum. Dev. 65 Suppl, S43–S52.PubMedCrossRefGoogle Scholar
  80. Roberfroid, M.B. 2000. Prebiotics and probiotics: are they functional foods? Am. J. Clin. Nutr. 71, S1682–S1687; discussion S1688–S1690.CrossRefGoogle Scholar
  81. Sadowsky, M.J., Staley, C., Heiner, C., Hall, R., Kelly, C.R., Brandt, L., and Khoruts, A. 2017. Analysis of gut microbiota -An ever changing landscape. Gut Microbes 8, 268–275.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sanchez, B., Delgado, S., Blanco-Miguez, A., Lourenco, A., Gueimonde, M., and Margolles, A. 2017. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 61, 1600240.CrossRefGoogle Scholar
  83. Sanders, M.E. 2008. Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46 Suppl 2, S58–S61; discussion S144–S151.PubMedCrossRefGoogle Scholar
  84. Sanders, M.E. 2016. Probiotics and microbiota composition. BMC Med. 14, 82.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sangwan, V., Tomar, S.K., Singh, R.R., Singh, A.K., and Ali, B. 2011. Galactooligosaccharides: novel components of designer foods. J. Food Sci. 76, R103–R111.PubMedCrossRefGoogle Scholar
  86. Senthilkumar, K., Manivasagan, P., Venkatesan, J., and Kim, S.K. 2013. Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int. J. Biol. Macromol. 60, 366–374.PubMedCrossRefGoogle Scholar
  87. Shanahan, F. 2017. Editorial: probiotics in inflammatory bowel disease-wrong organisms, wrong disease, or flawed concepts? Aliment. Pharmacol. Ther. 46, 632–633.Google Scholar
  88. Shang, L., Fukata, M., Thirunarayanan, N., Martin, A.P., Arnaboldi, P., Maussang, D., Berin, C., Unkeless, J.C., Mayer, L., Abreu, M.T., et al. 2008. Toll-like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria. Gastroenterology 135, 529–538.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Shi, L., Lin, Q., Yang, T., Nie, Y., Li, X., Liu, B., Shen, J., Liang, Y., Tang, Y., and Luo, F. 2016. Oral administration of Lentinus edodes beta-glucans ameliorates DSS-induced ulcerative colitis in mice via MAPK-Elk-1 and MAPK-PPARgamma pathways. Food Funct. 7, 4614–4627.PubMedCrossRefGoogle Scholar
  90. Sicard, J.F., Le Bihan, G., Vogeleer, P., Jacques, M., and Harel, J. 2017. Interactions of intestinal bacteria with components of the intestinal mucus. Front. Cell. Infect. Microbiol. 7, 387.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Slavin, J. 2013. Fiber and prebiotics: mechanisms and health benefits. Nutrients 5, 1417–1435.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sonnenburg, E.D., Zheng, H., Joglekar, P., Higginbottom, S.K., Firbank, S.J., Bolam, D.N., and Sonnenburg, J.L. 2010. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141, 1241–1252.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Staley, C., Kelly, C.R., Brandt, L.J., Khoruts, A., and Sadowsky, M.J. 2016. Complete microbiota engraftment is not essential for recovery from recurrent Clostridium difficile infection following fecal microbiota transplantation. MBio 7, e01965–16.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Strober, W. and Fuss, I.J. 2011. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140, 1756–1767.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sun, Y. and O’Riordan, M.X. 2013. Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Adv. Appl. Microbiol. 85, 93–118.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sunkara, L.T., Jiang, W., and Zhang, G. 2012. Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLoS One 7, e49558.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Swennen, K., Courtin, C.M., and Delcour, J.A. 2006. Non-digestible oligosaccharides with prebiotic properties. Crit. Rev. Food Sci. Nutr. 46, 459–471.PubMedCrossRefGoogle Scholar
  98. Takaishi, H., Matsuki, T., Nakazawa, A., Takada, T., Kado, S., Asahara, T., Kamada, N., Sakuraba, A., Yajima, T., Higuchi, H., et al. 2008. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int. J. Med. Microbiol. 298, 463–472.PubMedCrossRefGoogle Scholar
  99. Ten Bruggencate, S.J., Bovee-Oudenhoven, I.M., Lettink-Wissink, M.L., Katan, M.B., and Van Der Meer, R. 2004. Dietary fructooligosaccharides and inulin decrease resistance of rats to salmonella: protective role of calcium. Gut 53, 530–535.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Tojo, R., Suarez, A., Clemente, M.G., de los Reyes-Gavilan, C.G., Margolles, A., Gueimonde, M., and Ruas-Madiedo, P. 2014. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J. Gastroenterol. 20, 15163–15176.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Vahabnezhad, E., Mochon, A.B., Wozniak, L.J., and Ziring, D.A. 2013. Lactobacillus bacteremia associated with probiotic use in a pediatric patient with ulcerative colitis. J. Clin. Gastroenterol. 47, 437–439.PubMedCrossRefGoogle Scholar
  102. Van den Abbeele, P., Belzer, C., Goossens, M., Kleerebezem, M., De Vos, W.M., Thas, O., De Weirdt, R., Kerckhof, F.M., and Van de Wiele, T. 2013. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 7, 949–961.PubMedCrossRefGoogle Scholar
  103. Van der Sluis, M., De Koning, B.A., De Bruijn, A.C., Velcich, A., Meijerink, J.P., Van Goudoever, J.B., Buller, H.A., Dekker, J., Van Seuningen, I., Renes, I.B., et al. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129.PubMedCrossRefGoogle Scholar
  104. Verghese, M., Walker, L.T., Shackelford, L., and Chawan, C.B. 2005. Inhibitory effects of nondigestible carbohydrates of different chain lengths on azoxymethane-induced aberrant crypt foci in Fisher 344 rats. Nutr. Res. 25, 859–868.CrossRefGoogle Scholar
  105. Videla, S., Vilaseca, J., Antolin, M., Garcia-Lafuente, A., Guarner, F., Crespo, E., Casalots, J., Salas, A., and Malagelada, J.R. 2001. Dietary inulin improves distal colitis induced by dextran sodium sulfate in the rat. Am. J. Gastroenterol. 96, 1486–1493.PubMedCrossRefGoogle Scholar
  106. Weingarden, A., Gonzalez, A., Vazquez-Baeza, Y., Weiss, S., Humphry, G., Berg-Lyons, D., Knights, D., Unno, T., Bobr, A., Kang, J., et al. 2015. Dynamic changes in short-and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 3, 10.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A.G., Camire, M.E., and Brawley, S.H. 2017. Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol. 29, 949–982.PubMedCrossRefGoogle Scholar
  108. Whelan, K. and Quigley, E.M. 2013. Probiotics in the management of irritable bowel syndrome and inflammatory bowel disease. Curr. Opin. Gastroenterol. 29, 184–189.PubMedCrossRefGoogle Scholar
  109. Yamamoto, S. and Ma, X. 2009. Role of Nod2 in the development of Crohn’s disease. Microbes Infect. 11, 912–918.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Yamamoto, A., Itoh, T., Nasu, R., and Nishida, R. 2013. Effect of sodium alginate on dextran sulfate sodium-and 2,4,6-trinitrobenzene sulfonic acid-induced experimental colitis in mice. Pharmacology 92, 108–116.PubMedCrossRefGoogle Scholar
  111. Yang, S.K., Yun, S., Kim, J.H., Park, J.Y., Kim, H.Y., Kim, Y.H., Chang, D.K., Kim, J.S., Song, I.S., Park, J.B., et al. 2008. Epidemiology of inflammatory bowel disease in the Songpa-Kangdong district, Seoul, Korea, 1986-2005: a KASID study. Inflamm. Bowel Dis. 14, 542–549.PubMedCrossRefGoogle Scholar
  112. Zenewicz, L.A., Antov, A., and Flavell, R.A. 2009. CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol. Med. 15, 199–207.PubMedCrossRefGoogle Scholar
  113. Zhu, Y., Michelle Luo, T., Jobin, C., and Young, H.A. 2011. Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett. 309, 119–127.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Taekil Eom
    • 1
  • Yong Sung Kim
    • 2
  • Chang Hwan Choi
    • 3
  • Michael J. Sadowsky
    • 4
    • 5
    • 6
  • Tatsuya Unno
    • 1
    • 7
    Email author
  1. 1.Subtropical/tropical Organism Gene BankJeju National UniversityJejuRepublic of Korea
  2. 2.Department of Gastroenterology, Wonkwang Digestive Disease Research InstituteWonkwang University Sanbon HospitalGunpoRepublic of Korea
  3. 3.Department of Internal MedicineChung-Ang University College of MedicineSeoulRepublic of Korea
  4. 4.BioTechnology InstituteUniversity of MinnesotaSt. PaulUSA
  5. 5.Department of Soil, Water, and ClimateUniversity of MinnesotaSt. PaulUSA
  6. 6.Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulUSA
  7. 7.Faculty of Biotechnology, School of life sciences, SARIJeju National UniversityJejuRepublic of Korea

Personalised recommendations