Journal of Microbiology

, Volume 56, Issue 6, pp 387–392 | Cite as

Lysobacter pedocola sp. nov., a novel species isolated from Korean soil

  • Jun Hyeong Jang
  • Dongwook Lee
  • Taegun SeoEmail author
Microbial Systematics and Evolutionary Microbiology


A Gram-negative, yellow-pigmented bacterial strain, designated IPC6T, was isolated from soil in an arid region of Goyang-si (Gyeonggi-do, South Korea). Cells were strictly aerobic, non-spore-forming, rod-shaped. The strain grew within a temperature range of 10–42°C (optimum, 30°C) and pH of 5.0–11.0 (optimum, pH 8.0) in the presence of 0–2% (w/v) NaCl. Phylogenetically, the novel strain was closely related to members of the Lysobacter genus based on 16S rRNA sequence similarity, and showed the highest sequence similarity to Lysobacter niastensis KACC 11588T (98.5%). The predominant fatty acids were iso-C15:0, iso-C16:0, and summed feature 9 (iso-C17:1ω9c), with Q-8 identified as the major ubiquinone. The polar lipid content included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unknown aminophospholipid, and an unidentified phospholipid. DNA-DNA hybridization results indicated that the strain IPC6T was distinct from Lysobacter niastensis KACC 11588T (37.9 ± 0.14%), Lysobacter panacisoli KACC 17502T (56.4 ± 0.13%), Lysobacter soli KCTC 22011T (8.1 ± 0.04%), Lysobacter gummosus KCTC 12132T (9.6 ± 0.03%), and Lysobacter cavernae KCTC 42875T (37.5 ± 0.14%), respectively. The DNA G + C content of the novel strain was 71.1 mol%. Based on the collective phenotypic, genotypic and chemotaxonomic data, the IPC6T strain is considered to represent a novel species in the genus Lysobacter, for which the name Lysobacter pedocola sp. nov. (= KCTC 42811T = JCM 31020T) is proposed.


DNA-DNA relatedness Lysobacter taxonomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_8046_MOESM1_ESM.pdf (444 kb)
Supplementary material, approximately 444 KB.


  1. Bowman, J.P. 2000. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int. J. Syst. Evol. Microbiol. 50, 1861–1868.CrossRefPubMedGoogle Scholar
  2. Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.PubMedPubMedCentralGoogle Scholar
  3. Chen, W., Zhao, Y.L., Cheng, J., Zhou, X.K., Salam, N., Fang, B.Z., Li, Q.Q., Hozzein, W.N., and Li, W.J. 2016. Lysobacter cavernae sp. nov., a novel bacterium isolated from a cave sample. Antonie van Leeuwenhoek 109, 1047–1053.CrossRefPubMedGoogle Scholar
  4. Choi, J.H., Seok, J.H., Cha, J.H., and Cha, C.J. 2014. Lysobacter panacisoli sp. nov., isolated from ginseng soil. Int. J. Syst. Evol. Microbiol. 64, 2193–2197.CrossRefPubMedGoogle Scholar
  5. Christensen, P. and Cook, F.D. 1978. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int. J. Syst. Evol. Microbiol. 28, 367–393.Google Scholar
  6. Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316–354.PubMedPubMedCentralGoogle Scholar
  7. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefPubMedGoogle Scholar
  8. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20, 406–416.CrossRefGoogle Scholar
  9. Gonzalez, J.M. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G + C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.CrossRefPubMedGoogle Scholar
  10. Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by highperformance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.CrossRefGoogle Scholar
  11. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.CrossRefPubMedGoogle Scholar
  12. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefPubMedGoogle Scholar
  13. Komagata, K. and Suzuki, K.I. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 161–207.CrossRefGoogle Scholar
  14. Kuykendall, L.D., Roy, M.A., O'Neill, J.J., and Devine, T.E. 1988. Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bacteriol. 38, 358–361.CrossRefGoogle Scholar
  15. Loveland-Curtze, J., Miteva, V.I., Brenchley, J.E. 2011 Evaluation of a new fluorimetric DNA-DNA hybridization method. Can. J. Microbiol. 57, 250–255.CrossRefPubMedGoogle Scholar
  16. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  17. Oh, K.H., Kang, S.J., Jung, Y.T., Oh, T.K., and Yoon, J.H. 2011. Lysobacter dokdonensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 61, 1089–1093.CrossRefPubMedGoogle Scholar
  18. Park, J.H., Kim, R.M., Aslam, Z., Jeon, C.O., and Chung, Y.R. 2008. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int. J. Syst. Evol. Microbiol. 58, 387–392.CrossRefPubMedGoogle Scholar
  19. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  20. Siddiqi, M.Z. and Im, W.T. 2016. Lysobacter hankyongensis sp. nov., isolated from activated sludge and Lysobacter sediminicola sp. nov., isolated from freshwater sediment. Int. J. Syst. Evol. Microbiol. 66, 212–218.CrossRefPubMedGoogle Scholar
  21. Singh, H., Won, K., Du, J., Yang, J.E., Akter, S., Kim, K.Y., and Yi, T.H. 2015. Lysobacter agri sp. nov., a bacterium isolated from soil. Antonie van Leeuwenhoek 108, 553–561.CrossRefPubMedGoogle Scholar
  22. Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization, pp. 607–654. In Gerhadt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.), Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, USA.Google Scholar
  23. Srinivasan, S., Kim, M.K., Sathiyaraj, G., Kim, H.B., Kim, Y.J., and Yang, D.C. 2010. Lysobacter soli sp. nov., isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 60, 1543–1547.CrossRefPubMedGoogle Scholar
  24. Stackebrandt, E. and Goebel, B.M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 44, 846–849.CrossRefGoogle Scholar
  25. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Weon, H.Y., Kim, B.Y., Kim, M.K., Yoo, S.H., Kwon, S.W., Go, S.J., and Stackebrandt, E. 2007. Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. Int. J. Syst. Evol. Microbiol. 57, 548–551.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Life ScienceDongguk University-SeoulGoyangRepublic of Korea
  2. 2.Water Supply and Sewerage Research DivisionNational Institute of Environmental ResearchIncheonRepublic of Korea

Personalised recommendations