Journal of Microbiology

, Volume 56, Issue 5, pp 312–316 | Cite as

Burkholderia alba sp. nov., isolated from a soil sample on Halla mountain in Jeju island

  • Jae-Won Lee
  • Ye-Eun Kim
  • Soo-Je ParkEmail author
Microbial Systematics and Evolutionary Microbiology


A rod-shaped, round and white colony-forming strain AD18T was isolated from the soil on Halla mountain in Jeju Island, Republic of Korea. Comparative analysis of 16S rRNA gene sequence revealed that this strain was closely related to Burkholderia oklahomensis C6786T (98.8%), Burkholderia thailandensis KCTC 23190T (98.5%). DNA-DNA relatedness (14.6%) indicated that the strain AD18T represents a distinct species that is separate from B. oklahomensis C6786T. The isolate grew at pH 5.0–9.0 (optimum, pH 7.0), 0–3% (w/v) NaCl (optimum, 0%), and temperature 10–40°C (optimum 35°C). The sole quinone of the strain was Q-8, and the predominant fatty acids were C16:0, C17:0 cyclo, and C19:0 cyclo ω8c. The genomic DNA G + C content of AD18T was 65.6 mol%. Based on these findings, strain AD18T is proposed to be a novel species in the genus Burkholderia, for which the name Burkholderia alba sp. nov. is proposed (= KCCM 43268T = JCM 32403T). The type strain is AD18T.


Burkholderia alba Jeju soil polyphasic novel species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_8034_MOESM1_ESM.pdf (348 kb)
Supplementary material, approximately 348 KB.


  1. Aizawa, T., Bao Ve, N., Vijarnsorn, P., Nakajima, M., and Sunairi, M. 2010. Burkholderia acidipaludis sp. nov., aluminum-tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia. Int. J. Syst. Evol. Microbiol. 60, 2036–2041.CrossRefPubMedGoogle Scholar
  2. Aizawa, T., Vijarnsorn, P., Nakajima, M., and Sunairi, M. 2011. Burkholderia bannensis sp. nov., an acid-neutralizing bacterium isolated from torpedo grass (Panicum repens) growing in highly acidic swamps. Int. J. Syst. Evol. Microbiol. 61, 1645–1650.CrossRefPubMedGoogle Scholar
  3. Brett, P.J., DeShazer, D., and Woods, D.E. 1998. Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int. J. Syst. Bacteriol. 48 Pt 1, 317–320.CrossRefGoogle Scholar
  4. Elliott, G.N., Chen, W.M., Bontemps, C., Chou, J.H., Young, J.P., Sprent, J.I., and James, E.K. 2007. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann. Bot. 100, 1403–1411.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ezaki, T., Adnan, S., and Miyake, M. 1990. [Quantitative microdilution plate hybridization to determine genetic relatedness among bacterial strains]. Nihon Saikingaku Zasshi 45, 851–857.CrossRefPubMedGoogle Scholar
  6. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefPubMedGoogle Scholar
  7. Fischer, M. and Thatte, B. 2010. Revisiting an equivalence between maximum parsimony and maximum likelihood methods in phylogenetics. Bull. Math. Biol. 72, 208–220.CrossRefPubMedGoogle Scholar
  8. Glass, M.B., Steigerwalt, A.G., Jordan, J.G., Wilkins, P.P., and Gee, J.E. 2006. Burkholderia oklahomensis sp. nov., a Burkholderia pseudomallei-like species formerly known as the Oklahoma strain of Pseudomonas pseudomallei. Int. J. Syst. Evol. Microbiol. 56, 2171–2176.CrossRefPubMedGoogle Scholar
  9. Gonzalez, J.M. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G + C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.CrossRefPubMedGoogle Scholar
  10. Hu, H.Y., Fujie, K., and Urano, K. 1999. Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J. Biosci. Bioeng. 87, 378–382.CrossRefPubMedGoogle Scholar
  11. Kim, H.B., Park, M.J., Yang, H.C., An, D.S., Jin, H.Z., and Yang, D.C. 2006. Burkholderia ginsengisoli sp. nov., a β-glucosidaseproducing bacterium isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 56, 2529–2533.CrossRefPubMedGoogle Scholar
  12. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefPubMedGoogle Scholar
  13. Koh, H.W., Hong, H., Min, U.G., Kang, M.S., Kim, S.G., Na, J.G., Rhee, S.K., and Park, S.J. 2015a. Rhodanobacter aciditrophus sp. nov., an acidophilic bacterium isolated from mine wastewater. Int. J. Syst. Evol. Microbiol. 65, 4574–4579.CrossRefPubMedGoogle Scholar
  14. Koh, H.W., Song, H.S., Song, U., Yim, K.J., Roh, S.W., and Park, S.J. 2015b. Halolamina sediminis sp. nov., an extremely halophilic archaeon isolated from solar salt. Int. J. Syst. Evol. Microbiol. 65, 2479–2484.CrossRefPubMedGoogle Scholar
  15. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefPubMedGoogle Scholar
  16. Liu, X.Y., Li, C.X., Luo, X.J., Lai, Q.L., and Xu, J.H. 2014. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil. Int. J. Syst. Evol. Microbiol. 64, 3247–3253.CrossRefPubMedGoogle Scholar
  17. Lu, P., Zheng, L.Q., Sun, J.J., Liu, H.M., Li, S.P., Hong, Q., and Li, W.J. 2012. Burkholderia zhejiangensis sp. nov., a methyl-parathion-degrading bacterium isolated from a wastewater-treatment system. Int. J. Syst. Evol. Microbiol. 62, 1337–1341.CrossRefPubMedGoogle Scholar
  18. Martinez-Aguilar, L., Salazar-Salazar, C., Mendez, R.D., Caballero-Mellado, J., Hirsch, A.M., Vasquez-Murrieta, M.S., and Estrada-de los Santos, P. 2013. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Antonie van Leeuwenhoek 104, 1063–1071.CrossRefPubMedGoogle Scholar
  19. Rani, S., Koh, H.W., Kim, H., Rhee, S.K., and Park, S.J. 2017. Marinobacter salinus sp. nov., a moderately halophilic bacterium isolated from a tidal flat environment. Int. J. Syst. Evol. Microbiol. 67, 205–211.CrossRefPubMedGoogle Scholar
  20. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  21. Sheu, S.Y., Chen, M.H., Liu, W.Y., Andrews, M., James, E.K., Ardley, J.K., De Meyer, S.E., James, T.K., Howieson, J.G., Coutinho, B.G., et al. 2015. Burkholderia dipogonis sp. nov., isolated from root nodules of dipogon lignosus in New Zealand and Western Australia. Int. J. Syst. Evol. Microbiol. 65, 4716–4723.CrossRefPubMedGoogle Scholar
  22. Sheu, S.Y., Chou, J.H., Bontemps, C., Elliott, G.N., Gross, E., dos Reis Junior, F.B., Melkonian, R., Moulin, L., James, E.K., Sprent, J.I., et al. 2013. Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int. J. Syst. Evol. Microbiol. 63, 435–441.CrossRefPubMedGoogle Scholar
  23. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Vandamme, P., De Brandt, E., Houf, K., Salles, J.F., Dirk van Elsas, J., Spilker, T., and Lipuma, J.J. 2013. Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosphere soil. Int. J. Syst. Evol. Microbiol. 63, 4707–4718.CrossRefPubMedGoogle Scholar
  25. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T., and Arakawa, M. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36, 1251–1275.CrossRefPubMedGoogle Scholar
  27. Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F.O., Ludwig, W., Schleifer, K.H., Whitman, W.B., Euzeby, J., Amann, R., and Rossello-Mora, R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645.CrossRefPubMedGoogle Scholar
  28. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Zhang, H., Hanada, S., Shigematsu, T., Shibuya, K., Kamagata, Y., Kanagawa, T., and Kurane, R. 2000. Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int. J. Syst. Evol. Microbiol. 50 Pt 2, 743–749.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyJeju National UniversityJejuRepublic of Korea

Personalised recommendations