Advertisement

Journal of Microbiology

, Volume 56, Issue 3, pp 199–208 | Cite as

The Ruminococci: key symbionts of the gut ecosystem

  • Alex J. La Reau
  • Garret Suen
Review Human Microbiomes and Probiotics

Abstract

Mammalian gut microbial communities form intricate mutualisms with their hosts, which have profound implications on overall health. One group of important gut microbial mutualists are bacteria in the genus Ruminococcus, which serve to degrade and convert complex polysaccharides into a variety of nutrients for their hosts. Isolated decades ago from the bovine rumen, ruminococci have since been cultured from other ruminant and non-ruminant sources, and next-generation sequencing has further shown their distribution to be widespread in a diversity of animal hosts. While most ruminococci that have been studied are those capable of degrading cellulose, much less is known about non-cellulolytic, nonruminant-associated species, such as those found in humans. Furthermore, a mechanistic understanding of the role of Ruminococcus spp. in their respective hosts is still a work in progress. This review highlights the broad work done on species within the genus Ruminococcus with respect to their physiology, phylogenetic relatedness, and their potential impact on host health.

Keywords

microbiota host-microbe interactions symbiosis polysaccharide degradation Ruminococcus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abell, G.C.J., Cooke, C.M., Bennett, C.N., Conlon, M.A., and Mc-Orist, A.L. 2008. Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiol. Ecol. 66, 505–515.CrossRefPubMedGoogle Scholar
  2. Aminov, R.I., Kaneichi, K., Miyagi, T., Sakka, K., and Ohmiya, K. 1994. Construction of genetically marked Ruminococcus albus strains and conjugal transfer of plasmid pAMB1 into them. J. Ferment. Bioeng. 78, 1–5.CrossRefGoogle Scholar
  3. Bryant, M.P. and Robinson, I.M. 1961. Some nutritional requirements of the genus Ruminococcus. Appl. Microbiol. 9, 91–95.PubMedPubMedCentralGoogle Scholar
  4. Cao, Y., Zhang, R., Sun, C., Cheng, T., Liu, Y., and Xian, M. 2013. Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes. Biomed Res. Int. 2013, 723412.PubMedPubMedCentralGoogle Scholar
  5. Chassard, C., Delmas, E., Robert, C., Lawson, P.A., and Bernalier-Donadille, A. 2012. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. Int. J. Syst. Evol. Microbiol. 62, 138–143.PubMedGoogle Scholar
  6. Chen, J., Stevenson, D.M., and Weimer, P.J. 2004. Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens. Appl. Environ. Microbiol. 70, 3167–3170.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Christopherson, M.R., Dawson, J.A., Stevenson, D.M., Cunningham, A.C., Bramhacharya, S., Weimer, P.J., Kendziorski, C., and Suen, G. 2014. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis. BMC Genomics 15, 1066.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Christopherson, M.R. and Suen, G. 2013. Nature’s bioreactor: the rumen as a model for biofuel production. Biofuels 4, 511–521.CrossRefGoogle Scholar
  9. Chua, H.H., Chou, H.C., Tung, Y.L., Chiang, B.L., Liao, C.C., Liu, H.H., and Ni, Y.H. 2018. Intestinal dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic diseases in infants. Gastroenterology 154, 154–167.CrossRefPubMedGoogle Scholar
  10. Cocconcelli, P.S., Ferrari, E., Rossi, F., and Bottazzi, V. 1992. Plasmid transformation of Ruminococcus albus by means of high-voltage electroporation. FEMS Microbiol. Lett. 73, 203–207.CrossRefPubMedGoogle Scholar
  11. Consortium, T.H.M.P. 2013. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214.Google Scholar
  12. Crost, E.H., Tailford, L.E., Le Gall, G., Fons, M., Henrissat, B., and Juge, N. 2013. Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent. PLoS One 8, e76341.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Crost, E.H., Tailford, L.E., Monestier, M., Swarbreck, D., Henrissat, B., Crossman, L.C., and Juge, N. 2016. The mucin-degradation strategy of Ruminococcus gnavus: The importance of intramolecular trans-sialidases. Gut Microbes 7, 302–312.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cuív, P.Ó., Smith, W.J., Pottenger, S., Burman, S., Shanahan, E.R., and Morrison, M. 2015. Isolation of genetically tractable mostwanted bacteria by metaparental mating. Sci. Rep. 5, 13282.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dassa, B., Borovok, I., Ruimy-Israeli, V., Lamed, R., Flint, H.J., Duncan, S.H., Henrissat, B., Coutinho, P., Morrison, M., Mosoni, C.J., et al. 2014. Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. PLoS One 9, e99221.CrossRefPubMedPubMedCentralGoogle Scholar
  16. David, Y.B., Dassa, B., Borovok, I., Lamed, R., Koropatkin, N.M., Martens, E.C., White, B.A., Bernalier-Donadille, A., Duncan, S.H., Flint, H.J., et al. 2015. Ruminococcal cellulosome systems from rumen to human. Environ. Microbiol. 17, 3407–3426.CrossRefPubMedGoogle Scholar
  17. Devendran, S., Abdel-Hamid, A.M., Evans, A.F., Iakiviak, M., Kwon, I.H., Mackie, R.I., and Cann, I. 2016. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides. Sci. Rep. 6, 35342.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Devillard, E., Goodheart, D.B., Karnati, S.K.R., Bayer, E.A., Lamed, R., Miron, J., Nelson, K.E., and Morrison, M. 2004. Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J. Bacteriol. 186, 136–145.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ding, S.Y., Bayer, E.A., Steiner, D., Shoham, Y., and Lamed, R. 1999. A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. J. Bacteriol. 181, 6720–6729.PubMedPubMedCentralGoogle Scholar
  20. Ding, S.Y., Bayer, E.A., Steiner, D., Shoham, Y., and Lamed, R. 2000. A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. J. Bacteriol. 182, 4915–4925.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ding, S., Rincon, M.T., Lamed, R., Martin, J.C., McCrae, S.I., Aurilia, V., Shoham, Y., Bayer, E.A., and Flint, H.J. 2001. Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. 183, 1945–1953.Google Scholar
  22. Domingo, M.C., Huletsky, A., Boissinot, M., Bernard, K.A., Picard, F.J., and Bergeron, M.G. 2008. Ruminococcus gauvreauii sp. nov., a glycopeptide-resistant species isolated from a human faecal specimen. Int. J. Syst. Evol. Microbiol. 58, 1393–1397.PubMedGoogle Scholar
  23. Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson, K.E., and Relman, D.A. 2005. Diversity of the human intestinal microbial flora. Science 308, 1635–1638.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ezer, A., Matalon, E., Jindou, S., Borovok, I., Atamna, N., Yu, Z., Morrison, M., Bayer, E.A., and Lamed, R. 2008. Cell surface enzyme attachment is mediated by family 37 carbohydrate-binding modules, unique to Ruminococcus albus. J. Bacteriol. 190, 8220–8222.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Finegold, S.M., Molitoris, D., Song, Y., Liu, C., Vaisanen, M., Bolte, E., McTeague, M., Sandler, R., Wexler, H., Marlowe, E.M., et al. 2002. Gastrointestinal microflora studies in late-onset autism. Clin. Infect. Dis. 35 Suppl., S6–S16.CrossRefPubMedGoogle Scholar
  26. Flint, H.J., Bayer, E.A., Rincon, M.T., Lamed, R., and White, B.A. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131.CrossRefPubMedGoogle Scholar
  27. Hall, A.B., Tolonen, A.C., and Xavier, R.J. 2017. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 18, 690–699.CrossRefPubMedGoogle Scholar
  28. Hansen, S.G.K., Skov, M.N., and Justesen, U.S. 2013. Two cases of Ruminococcus gnavus bacteremia associated with diverticulitis. J. Clin. Microbiol. 51, 1334–1336.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Global Rumen Census Collaborators, and Janssen, P.H. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Holdeman, L.V. and Moore, W.E. 1974. New genus, Coprococcus, twelve new species, and emended descriptions of four previously describes species of bacteria from human feces. Int. J. Syst. Bacteriol. 24, 260–277.CrossRefGoogle Scholar
  31. Hsiao, A., Ahmed, A.M.S., Subramanian, S., Griffin, N.W., Drewry, L.L., Petri, W.A., Haque, R., Ahmed, T., and Gordon, J.I. 2014. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515, 423–426.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hungate, R.E. 1957. Microorganisms in the rumen fed a constant ration. Can. J. Microbiol. 3, 289–311.CrossRefPubMedGoogle Scholar
  33. Iakiviak, M., Devendran, S., Skorupski, A., Moon, Y.H., Mackie, R.I., and Cann, I. 2016. Functional and modular analyses of diverse endoglucanases from Ruminococcus albus 8, a specialist plant cell wall degrading bacterium. Sci. Rep. 6, 29979.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Iakiviak, M., Mackie, R.I., and Cann, I.K.O. 2011. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8. Appl. Environ. Microbiol. 77, 7541–7550.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Iannotti, E.L., Kafkewitz, I.D., Wolin, M.J., and Bryant, M.P. 1973. Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J. Bacteriol. 114, 1231–1240.PubMedPubMedCentralGoogle Scholar
  36. Israeli-Ruimy, V., Bule, P., Jindou, S., Dassa, B., Moraïs, S., Borovok, I., Barak, Y., Slutzki, M., Hamberg, Y., Cardoso, V., et al. 2017. Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions. Sci. Rep. 7, 42355.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jenq, R.R., Taur, Y., Devlin, S.M., Ponce, D.M., Goldberg, J.D., Ahr, K.F., Littmann, E.R., Ling, L., Gobourne, A.C., Miller, L.C., et al. 2015. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol. Blood Marrow Transplant. 21, 1373–1383.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jones, B.V., Begley, M., Hill, C., Gahan, C.G.M., and Marchesi, J.R. 2008. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA 105, 13580–13585.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kang, S., Denman, S.E., Morrison, M., Yu, Z., Dore, J., Leclerc, M., and McSweeney, C.S. 2010. Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm. Bowel Dis. 16, 2034–2042.CrossRefPubMedGoogle Scholar
  40. Kim, M.S., Roh, S.W., and Bae, J.W. 2011. Ruminococcus faecis sp. nov., isolated from human faeces. J. Microbiol. 49, 487–491.PubMedGoogle Scholar
  41. Klemm, D., Heublein, B., Fink, H.P., and Bohn, A. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. Engl. 44, 3358–3393.CrossRefPubMedGoogle Scholar
  42. Klieve, A.V., O’Leary, M.N., McMillen, L., and Ouwerkerk, D. 2007. Ruminococcus bromii, identification and isolation as a dominant community member in the rumen of cattle fed a barley diet. J. Appl. Microbiol. 103, 2065–2073.CrossRefPubMedGoogle Scholar
  43. Koeck, D.E., Pechtl, A., Zverlov, V. V., and Schwarz, W.H. 2014. Genomics of cellulolytic bacteria. Curr. Opin. Biotechnol. 29, 171–183.CrossRefPubMedGoogle Scholar
  44. Koskey, A.M., Fisher, J.C., Eren, A.M., Ponce-Terashima, R., Reis, M.G., Blanton, R.E., and McLellan, S.L. 2014. Blautia and Prevotella sequences distinguish human and animal fecal pollution in Brazil surface waters. Environ. Microbiol. Rep. 6, 696–704.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Krause, D.O., Bunch, R.J., Smith, W.J.M., and McSweeney, C.S. 1999a. Diversity of Ruminococcus strains: a survey of genetic polymorphisms and plant digestibility. J. Appl. Microbiol. 86, 487–495.CrossRefGoogle Scholar
  46. Krause, D.O., Dalrymple, B.P., Smith, W.J., Mackie, R.I., and Mc-Sweeney, C.S. 1999b. 16S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens: Design of a signature probe and its application in adult sheep. Microbiology 145, 1797–1807.CrossRefPubMedGoogle Scholar
  47. La Reau, A.J., Meier-Kolthoff, J.P., and Suen, G. 2016. Sequencebased analysis of the genus Ruminococcus resolves its phylogeny and reveals strong host association. Microb. Genomics 2, e000099.Google Scholar
  48. Lamed, R., Naimark, J., Morgenstern, E., and Bayer, E. 1987. Specialized cell-surface structures in cellulolytic bacteria. J. Bacteriol. 169, 3792–3800.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lamed, R., Setter, E., and Bayer, E. 1983a. Characterization of a cellulose-binding, cellulose-containing complex in Clostridium thermocellum. J. Bacteriol. 156, 828–836.PubMedPubMedCentralGoogle Scholar
  50. Lamed, R., Setter, E., Kenig, R., and Bayer, E. 1983b. The cellulosome: A discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol. Bioeng. Symp. 13, 163–181.Google Scholar
  51. Larsson, J.M.H., Karlsson, H., Crespo, J.G., Johansson, M.E.V., Eklund, L., Sjövall, H., and Hansson, G.C. 2011. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm. Bowel Dis. 17, 2299–2307.CrossRefPubMedGoogle Scholar
  52. Latham, M.J. and Wolin, M.J. 1977. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Environ. Microbiol. 34, 297–301.PubMedPubMedCentralGoogle Scholar
  53. Lawson, P.A. and Finegold, S.M. 2014. Reclassification of Ruminococcus obeum as Blautia obeum comb. nov. Int. J. Syst. Evol. Microbiol. 65, 789–793.CrossRefPubMedGoogle Scholar
  54. Lay, C., Sutren, M., Rochet, V., Saunier, K., Doré, J., and Rigottier-Gois, L. 2005. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ. Microbiol. 7, 933–946.CrossRefPubMedGoogle Scholar
  55. Leschine, S.B. 1995. Cellulose degradation in anaerobic nvironments. Annu. Rev. Microbiol. 49, 399–426.CrossRefPubMedGoogle Scholar
  56. Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R., et al. 2008a. Evolution of mammals and their gut microbes. Science 320, 1647–1651.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ley, R.E., Lozupone, C.A., Hamady, M., Knight, R., and Gordon, J.I. 2008b. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Li, M., Wang, B., Zhang, M., Rantalainen, M., Wang, S., Zhou, H., Zhang, Y., Shen, J., Pang, X., Zhang, M., et al. 2008. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl. Acad. Sci. USA 105, 2117–2122.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Liu, C., Finegold, S.M., Song, Y., and Lawson, P.A. 2008. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydroge. Int. J. Syst. Evol. Microbiol. 58, 1896–1902.CrossRefPubMedGoogle Scholar
  60. Lloyd-Price, J., Abu-Ali, G., and Huttenhower, C. 2016. The healthy human microbiome. Genome Med. 8, 1–11.CrossRefGoogle Scholar
  61. Lombard, V., Golaconda-Ramulu, H., Drula, E., Coutinho, P., and Henrissat, B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495.CrossRefPubMedGoogle Scholar
  62. Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577.CrossRefPubMedPubMedCentralGoogle Scholar
  63. McDonald, J.A.K., Schroeter, K., Fuentes, S., Heikamp-deJong, I., Khursigara, C.M., de Vos, W.M., and Allen-Vercoe, E. 2013. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. J. Microbiol. Methods 95, 167–174.CrossRefPubMedGoogle Scholar
  64. Moon, Y.H., Iakiviak, M., Bauer, S., Mackie, R.I., and Cann, I.K.O. 2011. Biochemical analyses of multiple endoxylanases from the rumen bacterium Ruminococcus albus 8 and their synergistic activities with accessory hemicellulose-degrading enzymes. Appl. Environ. Microbiol. 77, 5157–5169.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Moore, W.E.C., Cato, E.P., and Holden, L.V. 1972. Ruminococcus bromii sp. n. and emendation of the description of Ruminococcus sijpestein. Int. J. Syst. Bacteriol. 22, 78–80.CrossRefGoogle Scholar
  66. Moore, W.E.C., Johnson, J.L., and Holdeman, L.V. 1976. Emendation of bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int. J. Syst. Bacteriol. 26, 238–252.CrossRefGoogle Scholar
  67. Moraïs, S., David, Y.B., Bensoussan, L., Duncan, S.H., Koropatkin, N.M., Martens, E.C., Flint, H.J., and Bayer, E.A. 2016. Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. Environ. Microbiol. 18, 542–556.CrossRefPubMedGoogle Scholar
  68. Mukhopadhya, I., Morais, S., Laverde-Gomez, J., Sheridan, P.O., Walker, A.W., Kelly, W., Klieve, A.V, Ouwerkerk, D., Duncan, S.H., Louis, P., et al. 2017. Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. Environ. Microbiol. 18, 5288–5302.Google Scholar
  69. Ohara, H., Karita, S., Kimura, T., Sakka, K., and Ohmiya, K. 2000. Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci. Biotechnol. Biochem. 64, 254–260.CrossRefPubMedGoogle Scholar
  70. Pavlostathis, S.G., Miller, T.L., and Wolin, M.J. 1990. Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii. Appl. Microbiol. Biotechnol. 33, 109–116.CrossRefGoogle Scholar
  71. Pegden, R.S., Larson, M.A., Grant, R.J., and Morrison, M. 1998. Adherence of the gram-positive bacterium Ruminococcus albus to cellulose and identification of a novel form of cellulose-binding protein which belongs to the Pil family of proteins. J. Bacteriol. 180, 5921–5927.PubMedPubMedCentralGoogle Scholar
  72. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rainey, F.A. 2009. Family VIII. Ruminococcaceae fam. nov., pp. 1016–1043. In De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.H., and Whitman, W.B. (eds.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 3, Springer Nature.Google Scholar
  74. Rainey, F.A. and Janssen, P.H. 1995. Phylogenetic analysis by 16S ribosomal DNA sequence comparison reveals two unrelated groups of species within the genus Ruminococcus. FEMS Microbiol. Lett. 129, 69–73.PubMedGoogle Scholar
  75. Round, J.L. and Mazmanian, S.K. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Salonen, A., Lahti, L., Salojärvi, J., Holtrop, G., Korpela, K., Duncan, S.H., Date, P., Farquharson, F., Johnstone, A.M., Lobley, G.E., et al. 2014. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 8, 2218–2230.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Shi, Y., Odt, C.L., and Weimer, P.J. 1997. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl. Environ. Microbiol. 63, 734–742.PubMedPubMedCentralGoogle Scholar
  78. Shi, Y. and Weimer, P.J. 1997. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrateexcess and substrate-limited conditions. Appl. Environ. Microbiol. 63, 743–748.PubMedPubMedCentralGoogle Scholar
  79. Sijpesteijn, A.K. 1949. Cellulose-decomposing bacteria from the rumen of the cattle. Antonie van Leeuwenhoek 15, 49–52.CrossRefGoogle Scholar
  80. Suen, G., Stevenson, D.M., Bruce, D.C., Chertkov, O., Copeland, A., Cheng, J.F., Detter, C., Detter, J.C., Goodwin, L.A., Han, C.S., et al. 2011. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7. J. Bacteriol. 193, 5574–5575.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tailford, L.E., Owen, C.D., Walshaw, J., Crost, E.H., Hardy-Goddard, J., Le Gall, G., De Vos, W.M., Taylor, G.L., and Juge, N. 2015. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat. Commun. 6, 7624.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Takahashi, K., Nishida, A., Fujimoto, T., Fujii, M., Shioya, M., Imaeda, H., Inatomi, M., Bamba, S., Andoh, A., and Sugimoto, M. 2016. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion 93, 59–65.CrossRefPubMedGoogle Scholar
  83. Thurston, B., Dawson, K.A., and Strobel, H.J. 1994. Pentose utilization by the ruminal bacterium Ruminococcus albus. Appl. Environ. Microbiol. 60, 1087–1092.PubMedPubMedCentralGoogle Scholar
  84. Titécat, M., Wallet, F., Vieillard, M.H., Courcol, R.J., and Loïez, C. 2014. Ruminococcus gnavus: An unusual pathogen in septic arthritis. Anaerobe 30, 159–160.CrossRefPubMedGoogle Scholar
  85. Venturelli, O.S., Egbert, R.G., and Arkin, A.P. 2016. Towards engineering biological systems in a broader context. J. Mol. Biol. 428, 928–944.CrossRefPubMedGoogle Scholar
  86. Vereecke, L. and Elewaut, D. 2017. Spondyloarthropathies: Ruminococcus on the horizon in arthritic disease. Nat. Rev. Rheumatol. 13, 574–576.CrossRefPubMedGoogle Scholar
  87. Walker, A.W., Duncan, S.H., Harmsen, H.J.M., Holtrop, G., Welling, G.W., and Flint, H.J. 2008. The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environ. Microbiol. 10, 3275–3283.CrossRefPubMedGoogle Scholar
  88. Walker, A.W., Ince, J., Duncan, S.H., Webster, L.M., Holtrop, G., Ze, X., Brown, D., Stares, M.D., Scott, P., Bergerat, A., et al. 2011. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230.CrossRefPubMedGoogle Scholar
  89. Wang, L., Christophersen, C.T., Sorich, M.J., Gerber, J.P., Angley, M.T., and Conlon, M.A. 2013. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism 4, 1.Google Scholar
  90. Wegmann, U., Louis, P., Goesmann, A., Henrissat, B., Duncan, S.H., and Flint, H.J. 2013. Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (‘Ruminococcus bicirculans’) reveals two chromosomes and a selective capacity to utilize plant glucans. Environ. Microbiol. 16, 2879–2890.CrossRefPubMedGoogle Scholar
  91. Weimer, P.J. 1992. Cellulose degradation by ruminal microorganisms. Crit. Rev. Biotechnol. 12, 189–223.CrossRefGoogle Scholar
  92. Weimer, P.J., Price, N.P.J., Kroukamp, O., Joubert, L.M., Wolfaardt, G.M., and Van Zyl, W.H. 2006. Studies of the extracellular glycocalyx of the anaerobic cellulolytic bacterium Ruminococcus albus 7. Appl. Environ. Microbiol. 72, 7559–7566.CrossRefPubMedPubMedCentralGoogle Scholar
  93. White, D. 2007. The physiology and biochemistry of prokaryotes, 3rd ed. Oxford University Press, New York, N.Y., USA.Google Scholar
  94. Xu, Q., Morrison, M., Nelson, K.E., Bayer, E.A., Atamna, N., and Lamed, R. 2004. A novel family of carbohydrate-binding modules identified with Ruminococcus albus proteins. FEBS Lett. 566, 11–16.CrossRefPubMedGoogle Scholar
  95. Ze, X., David, B., Laverde-gomez, J.A., Dassa, B., Sheridan, P.O., Duncan, S.H., Louis, P., Henrissat, B., Juge, N., Koropatkin, N.M., et al. 2015. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic firmicutes bacterium Ruminococcus bromii. MBio 6, 1–11.CrossRefGoogle Scholar
  96. Ze, X., Duncan, S.H., Louis, P., and Flint, H.J. 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zheng, M.M., Wang, R.F., Li, C.X., and Xu, J.H. 2015. Two-step enzymatic synthesis of ursodeoxycholic acid with a new 7β-hydroxysteroid dehydrogenase from Ruminococcus torques. Process Biochem. 50, 598–604.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations