Journal of Microbiology

, Volume 56, Issue 6, pp 399–407 | Cite as

Root-associated bacteria influencing mycelial growth of Tricholoma matsutake (pine mushroom)

  • Seung-Yoon Oh
  • Young Woon LimEmail author
Microbial Ecology and Environmental Microbiology


Tricholoma matsutake is an ectomycorrhizal fungus usually associated with Pinus densiflora in South Korea. Fruiting bodies (mushrooms) of T. matsutake are economically important due to their attractive aroma; yet, T. matsutake is uncultivatable and its habitat is rapidly being eradicated due to global climate change. Root-associated bacteria can influence the growth of ectomycorrhizal fungi that co-exist in the host rhizosphere and distinctive bacterial communities are associated with T. matsutake. In this study, we investigated how these bacterial communities affect T. matsutake growth by isolating bacteria from the roots of P. densiflora colonized by ectomycorrhizae of T. matsutake and co-culturing rootassociated bacteria with T. matsutake isolates. Thirteen species of bacteria (27 isolates) were found in pine roots, all belonging to the orders Bacillales or Burkholderiales. Two species in the genus Paenibacillus promoted the growth of T. matsutake in glucose poor conditions, likely using soluble metabolites. In contrast, other bacteria suppressed the growth of T. matsutake using both soluble and volatile metabolites. Antifungal activity was more frequent in glucose poor conditions. In general, pine rhizospheres harbored many bacteria that had a negative impact on T. matsutake growth and the few Paenibacillus species that promoted T. matsutake growth. Paenibacillus species, therefore, may represent a promising resource toward successful cultivation of T. matsutake.


Paenibacillus pine mushroom growth promoting bacteria metabolite volatile organic compound fairy ring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, A., Currie, C., Cardoza, Y., Klepzig, K., and Raffa, K. 2009. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can. J. For. Res. 39, 1133–1147.CrossRefGoogle Scholar
  2. Bal, A. and Chanway, C.P. 2012. Evidence of nitrogen fixation in lodgepole pine inoculated with diazotrophic Paenibacillus polymyxa. Botany 90, 891–896.CrossRefGoogle Scholar
  3. Behrendt, U., Schumann, P., Stieglmeier, M., Pukall, R., Augustin, J., Spröer, C., Schwendner, P., Moissl-Eichinger, C., and Ulrich, A. 2010. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity-Description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst. Appl. Microbiol. 33, 328–336.CrossRefPubMedGoogle Scholar
  4. Bending, G.D., Poole, E.J., Whipps, J.M., and Read, D.J. 2002. Characterisation of bacteria from Pinus sylvestrisSuillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol. Ecol. 39, 219–227.PubMedGoogle Scholar
  5. Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. 57, 289–300.Google Scholar
  6. Berge, O., Guinebretière, M.H., Achouak, W., Normand, P., and Heulin, T. 2002. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int. J. Syst. Evol. Microbiol. 52, 607–616.CrossRefPubMedGoogle Scholar
  7. Brulé, C., Frey-Klett, P., Pierrat, J., Courrier, S., Gérard, F., Lemoine, M., Rousselet, J., Sommer, G., and Garbaye, J. 2001. Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol. Biochem. 33, 1683–1694.CrossRefGoogle Scholar
  8. Calvaruso, C., Turpault, M.P., Leclerc, E., and Frey-Klett, P. 2007. Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb. Ecol. 54, 567–577.CrossRefPubMedGoogle Scholar
  9. Cusano, A.M., Burlinson, P., Deveau, A., Vion, P., Uroz, S., Preston, G.M., and Frey-Klett, P. 2011. Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environ. Microbiol. Rep. 3, 203–210.CrossRefPubMedGoogle Scholar
  10. de Boer, W., Folman, L.B., Summerbell, R.C., and Boddy, L. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29, 795–811.CrossRefPubMedGoogle Scholar
  11. Deveau, A., Palin, B., Delaruelle, C., Peter, M., Kohler, A., Pierrat, J.C., Sarniguet, A., Garbaye, J., Martin, F., and Frey-Klett, P. 2007. The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol. 175, 743–755.CrossRefPubMedGoogle Scholar
  12. Dunstan, W., Malajczuk, N., and Dell, B. 1998. Effects of bacteria on mycorrhizal development and growth of container grown Eucalyptus diversicolor F. Muell. seedlings. Plant Soil 201, 241–249.CrossRefGoogle Scholar
  13. Duponnois, R. and Garbaye, J. 1990. Some mechanisms involved in growth stimulation of ectomycorrhizal fungi by bacteria. Can. J. Bot. 68, 2148–2152.CrossRefGoogle Scholar
  14. Duponnois, R. and Garbaye, J. 1991. Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis: effects in aseptic and in glasshouse conditions. Ann. For. Sci. 48, 239–251.CrossRefGoogle Scholar
  15. Ekblad, A. and Nordgren, A. 2002. Is growth of soil microorganisms in boreal forests limited by carbon or nitrogen availability? Plant Soil 242, 115–122.CrossRefGoogle Scholar
  16. Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., and Sarniguet, A. 2011. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev. 75, 583–609.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Frey-Klett, P., Garbaye, J., and Tarkka, M. 2007. The mycorrhiza helper bacteria revisited. New Phytol. 176, 22–36.CrossRefPubMedGoogle Scholar
  18. Garbaye, J. 1991. Biological interactions in the mycorrhizosphere. Cell. Mol. Life Sci. 47, 370–375.CrossRefGoogle Scholar
  19. Garbeva, P. and de Boer, W. 2009. Inter-specific interactions between carbon-limited soil bacteria affect behavior and gene expression. Microb. Ecol. 58, 36–46.CrossRefPubMedGoogle Scholar
  20. Guerin-Laguette, A., Vaario, L.M., Matsushita, N., Shindo, K., Suzuki, K., and Lapeyrie, F. 2003. Growth stimulation of a Shirolike, mycorrhiza forming, mycelium of Tricholoma matsutake on solid substrates by non-ionic surfactants or vegetable oil. Mycol. Prog. 2, 37–43.CrossRefGoogle Scholar
  21. Guo, Y., Li, X., Zhao, Z., Wei, H., Gao, B., and Gu, W. 2017. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci. Rep. 7, 46221.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Haas, D. and Défago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319.CrossRefPubMedGoogle Scholar
  23. Hampp, R. and Maier, A. 2008. Interaction between soil bacteria and ectomycorrhiza-forming fungi, pp. 197–210. In Varma, A., Abbott, L., Werner, D., and Hampp, R. (eds.), Plant surface microbiology. Springer, Berlin, Heidelberg, Germany.CrossRefGoogle Scholar
  24. Izumi, H., Anderson, I.C., Alexander, I.J., Killham, K., and Moore, E.R. 2006. Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol. Ecol. 56, 34–43.CrossRefPubMedGoogle Scholar
  25. Izumi, H., Cairney, J.W., Killham, K., Moore, E., Alexander, I.J., and Anderson, I.C. 2008. Bacteria associated with ectomycorrhizas of slash pine (Pinus elliottii) in south-eastern Queensland, Australia. FEMS Microbiol. Lett. 282, 196–204.CrossRefPubMedGoogle Scholar
  26. Izumi, H. and Finlay, R.D. 2011. Ectomycorrhizal roots select distinctive bacterial and ascomycete communities in Swedish subarctic forests. Environ. Microbiol. 13, 819–830.CrossRefPubMedGoogle Scholar
  27. Izumi, H., Moore, E., Killham, K., Alexander, I., and Anderson, I. 2007. Characterisation of endobacterial communities in ectomycorrhizas by DNA- and RNA-based molecular methods. Soil Biol. Biochem. 39, 891–899.CrossRefGoogle Scholar
  28. Jeon, S.M. and Ka, K.H. 2015. Cultural characteristics of Korean ectomycorrhizal fungi. Korean J. Mycol. 43, 1–12.CrossRefGoogle Scholar
  29. Jiang, H., He, C., Yu, F., Liu, P., and Zhao, W. 2015. Bacterial diversity cultured from shiros of Tricholoma matsutake. Chin. J. Ecol. 34, 150–156.Google Scholar
  30. Ka, K.H., Kim, H.S., Jeon, S.M., Ryoo, R., Jang, Y., Wang, E.J., and Jeong, Y.S. 2017. Determination of the minimum size of seedlings with Matsutake mycelia that can survive in the field for Matsutake- infected pine tree production. Korean J. Mycol. 45, 188–195.Google Scholar
  31. Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., and Piechulla, B. 2009. Bacterial volatiles and their action potential. Appl. Microbiol. Biotechnol. 81, 1001–1012.CrossRefPubMedGoogle Scholar
  32. Kang, A., Cha, D., Kim, Y., Park, Y., and You, C. 1989. Studies on analyzing meteorological elements related with yield of Tricholoma matsutake (S. Ito et Imai) Singer. Korean J. Mycol. 17, 51–56.Google Scholar
  33. Kataoka, R., Siddiqui, Z.A., Kikuchi, J., Ando, M., Sriwati, R., Nozaki, A., and Futai, K. 2012. Detecting nonculturable bacteria in the active mycorrhizal zone of the pine mushroom Tricholoma matsutake. J. Microbiol. 50, 199–206.CrossRefPubMedGoogle Scholar
  34. Kataoka, R., Taniguchi, T., Ooshima, H., and Futai, K. 2008. Comparison of the bacterial communities established on the mycorrhizae formed on Pinus thunbergii root tips by eight species of fungi. Plant Soil 304, 267–275.CrossRefGoogle Scholar
  35. Katoh, K. and Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kim, I., Jung, G., Han, S., Cha, J., and Sung, J. 2005. Favorable condition for mycelial growth of Tricholoma matsutake. Korean J. Mycol. 33, 22–29.CrossRefGoogle Scholar
  37. Kim, Y.J. and Whang, K.S. 2007. Phylogenetic characteristics of viable but nonculturable bacterial populations in a pine mushroom (Tricholoma matsutake) forest soil. Korean J. Microbiol. 43, 201–209.Google Scholar
  38. Kim, M., Yoon, H., Kim, Y.E., Kim, Y.J., Kong, W.S., and Kim, J.G. 2014. Comparative analysis of bacterial diversity and communities inhabiting the fairy ring of Tricholoma matsutake by barcoded pyrosequencing. J. Appl. Microbiol. 117, 699–710.CrossRefPubMedGoogle Scholar
  39. Labbé, J.L., Weston, D.J., Dunkirk, N., Pelletier, D.A., and Tuskan, G.A. 2014. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus. Front. Plant. Sci. 5, 579.PubMedPubMedCentralGoogle Scholar
  40. Li, Q., Li, X., Chen, C., Li, S., Huang, W., Xiong, C., Jin, X., and Zheng, L. 2016. Analysis of bacterial diversity and communities associated with Tricholoma matsutake fruiting bodies by barcoded pyrosequencing in Sichuan province, southwest China. J. Microbiol. Biotechnol. 26, 89–98.CrossRefPubMedGoogle Scholar
  41. Linderman, R. 1988. Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78, 366–371.Google Scholar
  42. Marupakula, S., Mahmood, S., and Finlay, R.D. 2016. Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by Pinus sylvestris roots colonized by different ectomycorrhizal fungi. Environ. Microbiol. 18, 1470–1483.CrossRefPubMedGoogle Scholar
  43. Nazir, R., Warmink, J.A., Boersma, H., and Van Elsas, J.D. 2010. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol. Ecol. 71, 169–185.CrossRefPubMedGoogle Scholar
  44. Oh, S.Y., Fong, J.J., Park, M.S., and Lim, Y.W. 2016. Distinctive feature of microbial communities and bacterial functional profiles in Tricholoma matsutake dominant soil. PLoS One 11, e0168573.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Oh, S.Y., Kim, M., Eimes, J.A., and Lim, Y.W. 2018. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds. PLoS One 13, e0190948.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Poole, E.J., Bending, G.D., Whipps, J.M., and Read, D.J. 2001. Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol. 151, 743–751.CrossRefGoogle Scholar
  47. Preston, G.M. 2007. Metropolitan microbes: type III secretion in multihost symbionts. Cell Host Microbe 2, 291–294.CrossRefPubMedGoogle Scholar
  48. Raaijmakers, J.M., de Bruijn, I., and de Kock, M.J. 2006. Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol. Plant Microbe Interact. 19, 699–710.CrossRefPubMedGoogle Scholar
  49. Raaijmakers, J.M., Paulitz, T.C., Steinberg, C., Alabouvette, C., and Moënne-Loccoz, Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321, 341–361.CrossRefGoogle Scholar
  50. Riedlinger, J., Schrey, S.D., Tarkka, M.T., Hampp, R., Kapur, M., and Fiedler, H.P. 2006. Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl. Environ. Microbiol. 72, 3550–3557.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schmidt, R., Etalo, D.W., de Jager, V., Gerards, S., Zweers, H., de Boer, W., and Garbeva, P. 2016. Microbial small talk: Volatiles in fungal-bacterial interactions. Front. Microbiol. 6, 1495.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schrey, S.D., Schellhammer, M., Ecke, M., Hampp, R., and Tarkka, M.T. 2005. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol. 168, 205–216.CrossRefPubMedGoogle Scholar
  53. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Timonen, S. and Hurek, T. 2006. Characterization of culturable bacterial populations associating with Pinus sylvestris-Suillus bovinus mycorrhizospheres. Can. J. Microbiol. 52, 769–778.CrossRefPubMedGoogle Scholar
  55. Tyc, O., Song, C., Dickschat, J.S., Vos, M., and Garbeva, P. 2017. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25, 280–292.CrossRefPubMedGoogle Scholar
  56. Vaario, L.M., Fritze, H., Spetz, P., Heinonsalo, J., Hanajik, P., and Pennanen, T. 2011. Tricholoma matsutake dominates diverse microbial communities in different forest soils. Appl. Environ. Microbiol. 77, 8523–8531.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Varese, G., Portinaro, S., Trotta, A., Scannerini, S., Luppi-Mosca, A., and Martinotti, M. 1996. Bacteria associated with Suillus grevillei sporocarps and ectomycorrhizae and their effects on in vitro growth of the mycobiont. Symbiosis 21, 129–147.Google Scholar
  58. Viollet, A., Corberand, T., Mougel, C., Robin, A., Lemanceau, P., and Mazurier, S. 2011. Fluorescent pseudomonads harboring type III secretion genes are enriched in the mycorrhizosphere of Medicago truncatula. FEMS Microbiol. Ecol. 75, 457–467.CrossRefPubMedGoogle Scholar
  59. Wang, Y., Hall, I.R., and Evans, L.A. 1997. Ectomycorrhizal fungi with edible fruiting bodies 1. Tricholoma matsutake and related fungi. Econ. Bot. 51, 311–327.CrossRefGoogle Scholar
  60. Warmink, J.A. and van Elsas, J.D. 2008. Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME J. 2, 887–900.CrossRefPubMedGoogle Scholar
  61. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wheatley, R. 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek 81, 357–364.CrossRefPubMedGoogle Scholar
  63. Yamada, A., Maeda, K., Kobayashi, H., and Murata, H. 2006. Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring ‘shiro’. Mycorrhiza 16, 111–116.CrossRefPubMedGoogle Scholar
  64. Yamanaka, T., Ota, Y., Konno, M., Kawai, M., Ohta, A., Neda, H., Terashima, Y., and Yamada, A. 2014. The host ranges of coniferassociated Tricholoma matsutake, Fagaceae-associated T. bakamatsutake and T. fulvocastaneum are wider in vitro than in nature. Mycologia 106, 397–406.CrossRefPubMedGoogle Scholar
  65. Yang, X., Luedeling, E., Chen, G., Hyde, K.D., Yang, Y., Zhou, D., Xu, J., and Yang, Y. 2012. Climate change effects fruiting of the prize matsutake mushroom in China. Fungal Divers. 56, 189–198.CrossRefGoogle Scholar
  66. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zou, C.S., Mo, M.H., Gu, Y.Q., Zhou, J.P., and Zhang, K.Q. 2007. Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol. Biochem. 39, 2371–2379.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Biological Sciences and Institute of MicrobiologySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations