Journal of Microbiology

, Volume 56, Issue 2, pp 97–103 | Cite as

Lysobacter spongiae sp. nov., isolated from spongin

  • Heejae Choi
  • Wan-Taek ImEmail author
  • Jin-Sook ParkEmail author
Microbial Systematics and Evolutionary Microbiology


A Gram-negative, motile, aerobic and rod-shaped bacterial strain designated 119BY6-57T was isolated from spongin. The taxonomic position of the novel isolate was confirmed using the polyphasic approach. Strain 119BY6-57T grew well at 25–30°C on marine agar. On the basis of 16S rRNA gene sequence similarity, strain 119BY6-57T belongs to the family Xanthomonadaceae and is related to Lysobacter aestuarii S2-CT (99.8% sequence similarity), L. maris KMU-14T (97.5%), and L. daejeonensis GH1-9T (97.3%). Lower sequence similarities (97.0%) were found with all of the other recognized members of the genus Lysobacter. The G + C content of the genomic DNA was 69.9 mol%. The major respiratory quinone was Q-8 and the major fatty acids were C16:0 iso, C15:0 iso, summed feature 9 (comprising C17:1 iso ω9c and/or C16:0 10-methyl), summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c), and C11:0 iso 3-OH. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, three unidentified phospholipids, and an unidentified polar lipid. DNADNA relatedness values between strain 119BY6-57T and its closest phylogenetically neighbors were below 48.0 ± 2.1%. Based on genotypic and phenotypic characteristics, it is concluded that strain 119BY6-57T is a new member within the genus Lysobacter, for which the name Lysobacter spongiae sp. nov. is proposed. The type strain is 119BY6-57T (= KACC 19276T = LMG 30077T).


Lysobacter spongiae 16S rRNA gene polyphasic taxonomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atlas, R.M. 1993. Handbook of Microbiological Media. CRC Press, Boca Raton, Florida, USA.Google Scholar
  2. Bae, H.S., Im, W.T., and Lee, S.T. 2005. Lysobacter concretionis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket reactor. Int. J. Syst. Evol. Microbiol. 55, 1155–1161.CrossRefPubMedGoogle Scholar
  3. Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.PubMedPubMedCentralGoogle Scholar
  4. Cappuccino, J.G. and Sherman, N. 2002. Microbiology: a laboratory manual, 6th ed. Pearson Education, Inc., California, USA.Google Scholar
  5. Euzéby, J.P. 1997. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int. J. Syst. Bacteriol. 47, 590–592.CrossRefPubMedGoogle Scholar
  6. Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224–229.CrossRefGoogle Scholar
  7. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefPubMedGoogle Scholar
  8. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  9. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.Google Scholar
  10. Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.CrossRefGoogle Scholar
  11. Jeong, S.E., Lee, H.J., and Jeon, C.O. 2016. Lysobacter aestuarii sp. nov., isolated from estuary sediment. Int. J. Syst. Evol. Microbiol. 66, 1346–1351.CrossRefPubMedGoogle Scholar
  12. Kim, S.J., Ahn, J.H., Weon, H.Y., Hong, S.B., and Seok, S.J. 2016. Lysobacter terricola sp. nov., isolated from greenhouse soil. Int. J. Syst. Evol. Microbiol. 66, 1401–1406.CrossRefPubMedGoogle Scholar
  13. Kim, J.K., Kang, M.S., Park, S.C., Kim, K.M., Choi, K., Yoon, M.H., and Im, W.T. 2015. Sphingosinicella ginsenosidimutans sp. nov., with ginsenoside converting activity. J. Microbiol. 53, 435–441.CrossRefPubMedGoogle Scholar
  14. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge, New York, USA.CrossRefGoogle Scholar
  15. Luo, G., Shi, Z., and Wang, G. 2012. Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int. J. Syst. Evol. Microbiol. 62, 1659–1665.CrossRefPubMedGoogle Scholar
  16. Mesbah, M., Premachandran, U., and Whitman, W. 1989. Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.CrossRefGoogle Scholar
  17. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  18. Moore, D.D. and Dowhan, D. 1995. Preparation and analysis of DNA, pp. 2–11. In Ausubel, F.W., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.), Current Protocols in Molecular Biology. Wiley, New York, USA.Google Scholar
  19. Park, J.H., Kim, R., Aslam, Z., Jeon, C.O., and Chung, Y.R. 2008. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int. J. Syst. Evol. Microbiol. 58, 387–392.CrossRefPubMedGoogle Scholar
  20. Perry, L.B. 1973. Gliding motility in some non-spreading flexibacteria. J. Appl. Bacteriol. 36, 227–232.CrossRefPubMedGoogle Scholar
  21. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  22. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101, MIDI Inc., Newark, DE, USA.Google Scholar
  23. Siddiqi, M.Z. and Im, W.T. 2016a. Lysobacter hankyongensis sp. nov., isolated from activated sludge and Lysobacter sediminicola sp. nov., isolated from freshwater sediment. Int. J. Syst. Evol. Microbiol. 66, 212–218.CrossRefPubMedGoogle Scholar
  24. Siddiqi, M.Z. and Im, W.T. 2016b. Lysobacter pocheonensis sp. nov., isolated from soil of a ginseng field. Arch. Microbiol. 198, 551–557.CrossRefPubMedGoogle Scholar
  25. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ten, L.N., Im, W.T., Kim, M.K., Kang, M.S., and Lee, S.T. 2004. Development of a plate technique for screening of polysaccharidedegrading microorganisms by using a mixture of insoluble chromogenic substrates. J. Microbiol. Methods 56, 375–382.CrossRefPubMedGoogle Scholar
  27. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.CrossRefGoogle Scholar
  28. Wang, Y., Dai, J., Zhang, L., Luo, X., and Li, Y. 2009. Lysobacter ximonensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 59, 786–789.CrossRefPubMedGoogle Scholar
  29. Wang, G.L., Wang, L., Chen, H.H., Shen, B., Li, S.P., and Jiang, J.D. 2011. Lysobacter ruishenii sp. nov., a chlorothalonil-degrading bacterium isolated from a long-term chlorothalonil-contaminated soil. Int. J. Syst. Evol. Microbiol. 61, 674–679.CrossRefPubMedGoogle Scholar
  30. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar
  31. Weon, H.Y., Kim, B.Y., Baek, Y.K., Yoo, S.H., Kwon, S.W., Stackebrandt, E., and Go, S.J. 2006. Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int. J. Syst. Evol. Microbiol. 56, 947–951.CrossRefPubMedGoogle Scholar
  32. Ye, X.M., Chu, C.W., Shi, C., Zhu, J.C., and He, Q. 2015. Lysobacter caeni sp. nov., isolated from the sludge of a pesticide manufacturing factory. Int. J. Syst. Evol. Microbiol. 65, 845–850.CrossRefPubMedGoogle Scholar
  33. Yoon, J. 2016. Polyphasic characterization of Lysobacter maris sp. nov., a bacterium isolated from seawater. Curr. Microbiol. 72, 282–287.CrossRefPubMedGoogle Scholar
  34. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological Sciences and BiotechnologyHannam UniversityDaejeonRepublic of Korea
  2. 2.Department of BiotechnologyHankyong National UniversityAnseongRepublic of Korea

Personalised recommendations