Journal of Microbiology

, Volume 55, Issue 11, pp 892–899 | Cite as

Bile salt hydrolase-mediated inhibitory effect of Bacteroides ovatus on growth of Clostridium difficile

  • Soobin Yoon
  • Junsun Yu
  • Andrea McDowell
  • Sung Ho Kim
  • Hyun Ju YouEmail author
  • GwangPyo KoEmail author
Microbial Pathogenesis and Host-Microbe Interaction


Clostridium difficile infection (CDI) is one of the most common nosocomial infections. Dysbiosis of the gut microbiota due to consumption of antibiotics is a major contributor to CDI. Recently, fecal microbiota transplantation (FMT) has been applied to treat CDI. However, FMT has important limitations including uncontrolled exposure to pathogens and standardization issues. Therefore, it is necessary to evaluate alternative treatment methods, such as bacteriotherapy, as well as the mechanism through which beneficial bacteria inhibit the growth of C. difficile. Here, we report bile acid-mediated inhibition of C. difficile by Bacteroides strains which can produce bile salt hydrolase (BSH). Bacteroides strains are not commonly used to treat CDI; however, as they comprise a large proportion of the intestinal microbiota, they can contribute to bile acid-mediated inhibition of C. difficile. The inhibitory effect on C. difficile growth increased with increasing bile acid concentration in the presence of Bacteroides ovatus SNUG 40239. Furthermore, this inhibitory effect on C. difficile growth was significantly attenuated when bile acid availability was reduced by cholestyramine, a bile acid sequestrant. The findings of this study are important due to the discovery of a new bacterial strain that in the presence of available bile acids inhibits growth of C. difficile. These results will facilitate development of novel bacteriotherapy strategies to control CDI.


Clostridium difficile bile salt hydrolase Bacteroides ovatus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allegretti, J.R., Kearney, S., Li, N., Bogart, E., Bullock, K., Gerber, G.K., Bry, L., Clish, C.B., Alm, E., and Korzenik, J.R. 2016. Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment. Pharmacol. Ther. 43, 1142–1153.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bakken, J.S., Borody, T., Brandt, L.J., Brill, J.V., Demarco, D.C., Franzos, M.A., Kelly, C., Khoruts, A., Louie, T., Martinelli, L.P., et al. 2011. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 9, 1044–1049.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Begley, M., Hill, C., and Gahan, C.G. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72, 1729–1738.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Buffie, C.G., Bucci, V., Stein, R.R., McKenney, P.T., Ling, L., Gobourne, A., No, D., Liu, H., Kinnebrew, M., Viale, A., et al. 2014. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Burke, K.E. and Lamont, J.T. 2014. Clostridium difficile infection: A worldwide disease. Gut Liver 8, 1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chiang, J.Y.L. 2009. Bile acids: regulation of synthesis. J. Lipid Res. 50, 1955–1966.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cocolin, L., Innocente, N., Biasutti, M., and Comi, G. 2004. The late blowing in cheese: a new molecular approach based on PCR and DGGE to study the microbial ecology of the alteration process. Int. J. Food Microbiol. 90, 83–91.CrossRefPubMedGoogle Scholar
  8. Geeraerts, S., Ducatelle, R., Haesebrouck, F., and Van Immerseel, F. 2015. Bacillus amyloliquefaciens as prophylactic treatment for Clostridium difficile associated disease in a mouse model. J. Gastroenterol. Hepatol. 30, 1275–1280.CrossRefPubMedGoogle Scholar
  9. Gérard, P. 2013. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 3, 14–24.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Giel, J.L., Sorg, J.A., Sonenshein, A.L., and Zhu, J. 2010. Metabolism of bile salts in mice influences spore germination in Clostridium difficile. PLoS One 5, e8740.CrossRefGoogle Scholar
  11. Jarocki, P. 2011. Molecular characterization of bile salt hydrolase from Bifidobacterium animalis subsp. lactis Bi30. J. Microbiol. Biotechnol. 21, 838–845.CrossRefPubMedGoogle Scholar
  12. Kim, Y.S., Han, D.S., Kim, Y.H., Kim, W.H., Kim, J.S., Kim, H.S., Kim, H.S., Park, Y.S., Song, H.J., Shin, S.J., et al. 2013. Incidence and clinical features of Clostridium difficile infection in Korea: a nationwide study. Epidemiol. Infect. 141, 189–194.CrossRefPubMedGoogle Scholar
  13. Kink, J.A. and Williams, J.A. 1998. Antibodies to recombinant Clostridium difficile toxins A and B are an effective treatment and prevent relapse of C. difficile-associated disease in a hamster model of infection. Infect. Immun. 66, 2018–2025.PubMedPubMedCentralGoogle Scholar
  14. Longo, D.L., Leffler, D.A., and Lamont, J.T. 2015. Clostridium difficile Infection. N. Engl. J. Med. 372, 1539–1548.CrossRefGoogle Scholar
  15. Martin, J.S.H., Monaghan, T.M., and Wilcox, M.H. 2016. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat. Rev. Gastroenterol. Hepatol. 13, 206–216.CrossRefPubMedGoogle Scholar
  16. Pavlidis, P., Powell, N., Vincent, R.P., Ehrlich, D., Bjarnason, I., and Hayee, B. 2015. Systematic review: Bile acids and intestinal inflammation-luminal aggressors or regulators of mucosal defence? Aliment. Pharmacol. Ther. 42, 802–817.CrossRefPubMedGoogle Scholar
  17. Peláez, T., Alcalá, L., Alonso, R., Rodríguez-Créixems, M., García-Lechuz, J.M., and Bouza, E. 2002. Reassessment of clostridium difficile susceptibility to metronidazole and vancomycin. Antimicrob. Agents Chemother. 46, 1647–1650.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ridlon, J.M., Kang, D.J., and Hylemon, P.B. 2006. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259.CrossRefPubMedGoogle Scholar
  19. Ridlon, J., Kang, D., Hylemon, P., and Bajaj, J. 2014. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30, 332–338.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Rohlke, F. and Stollman, N. 2012. Fecal microbiota transplantation in relapsing Clostridium difficile infection. Therap. Adv. Gastroenterol. 5, 403–420.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Rupnik, M., Wilcox, M.H., and Gerding, D.N. 2009. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7, 526–536.CrossRefPubMedGoogle Scholar
  22. Sayin, S.I., Wahlström, A., Felin, J., Jäntti, S., Marschall, H.U., Bamberg, K., Angelin, B., Hyötyläinen, T., Orešič, M., and Bäckhed, F. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235.CrossRefPubMedGoogle Scholar
  23. Seekatz, A.M. and Young, V.B. 2014. Clostridium difficile and the microbiota. J. Clin. Invest. 124, 4182–4189.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sekirov, I., Russell, S.L., Antunes, L.C.M., and Finlay, B.B. 2010. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904.CrossRefPubMedGoogle Scholar
  25. Shahinas, D., Silverman, M., Sittler, T., Chiu, C., Kim, P., Allen-Vercoe, E., Weese, S., Wong, A., Low, D.E., and Pillai, D.R. 2012. Toward an understanding of changes in diversity associated with fecal microbiome transplantation based on 16S rRNA gene deep sequencing. mBio 3, E00338–12.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Smits, W.K., Lyras, D., Lacy, D.B., Wilcox, M.H., and Kuijper, E.J. 2016. Clostridium difficile infection. Nat. Rev. Dis. Prim. 2, 16020.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sorg, J.A. and Sonenshein, A.L. 2008. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sorg, J.A. and Sonenshein, A.L. 2010. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J. Bacteriol. 192, 4983–4990.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Wang, M., Ahrné, S., Jeppsson, B., and Molin, G. 2005. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol. Ecol. 54, 219–231.CrossRefPubMedGoogle Scholar
  30. Wang, Q., Euler, C.W., Delaune, A., and Fischetti, V.A. 2015. Using a novel lysin to help control Clostridium difficile infections. Antimicrob. Agents Chemother. 59, 7447–7457.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wells, J.E., Williams, K.B., Whitehead, T.R., Heuman, D.M., and Hylemon, P.B. 2003. Development and application of a polymerase chain reaction assay for the detection and enumeration of bile acid 7α-dehydroxylating bacteria in human feces. Clin. Chim. Acta. 331, 127–134.CrossRefPubMedGoogle Scholar
  32. Wexler, H.M. 2007. Bacteroides: The good, the bad, and the nittygritty. Clin. Microbiol. Rev. 20, 593–621.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wu, M., McNulty, N.P., Rodionov, D.A., Khoroshkin, M.S., Griffin, N.W., Cheng, J., Latreille, P., Kerstetter, R.A., Terrapon, N., Henrissat, B., et al. 2015. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science 350, aac5992.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Environmental Health Sciences, Graduate School of Public HealthSeoul National UniversitySeoulRepublic of Korea
  2. 2.KoBioLabs, Inc.SeoulRepublic of Korea
  3. 3.Center for Human and Environmental Microbiome, Institute of Health and EnvironmentSeoul National UniversitySeoulRepublic of Korea
  4. 4.Bio-MAX/N-BioSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations