Advertisement

Journal of Microbiology

, Volume 55, Issue 10, pp 783–791 | Cite as

Silencing the cleavage factor CFIm25 as a new strategy to control Entamoeba histolytica parasite

  • Juan David Ospina-Villa
  • Nancy Guillén
  • Cesar Lopez-Camarillo
  • Jacqueline Soto-Sanchez
  • Esther Ramirez-Moreno
  • Raul Garcia-Vazquez
  • Carlos A. Castañon-Sanchez
  • Abigail Betanzos
  • Laurence A. MarchatEmail author
Microbial Genetics, Genomics and Molecular Biology

Abstract

The 25 kDa subunit of the Clevage Factor Im (CFIm25) is an essential factor for messenger RNA polyadenylation in human cells. Therefore, here we investigated whether the homologous protein of Entamoeba histolytica, the protozoan responsible for human amoebiasis, might be considered as a biochemical target for parasite control. Trophozoites were cultured with bacterial double-stranded RNA molecules targeting the EhCFIm25 gene, and inhibition of mRNA and protein expression was confirmed by RT-PCR and Western blot assays, respectively. EhCFIm25 silencing was associated with a significant acceleration of cell proliferation and cell death. Moreover, trophozoites appeared as larger and multinucleated cells. These morphological changes were accompanied by a reduced mobility, and erythrophagocytosis was significantly diminished. Lastly, the knockdown of EhCFIm25 affected the poly(A) site selection in two reporter genes and revealed that EhCFIm25 stimulates the utilization of downstream poly(A) sites in E. histolytica mRNA. Overall, our data confirm that targeting the polyadenylation process represents an interesting strategy for controlling parasites, including E. histolytica. To our best knowledge, the present study is the first to have revealed the relevance of the cleavage factor CFIm25 as a biochemical target in parasites.

Keywords

amoebiasis gene knockdown polyadenylation protozoan parasite virulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Supplementary material, approximately 11.2 MB.

Supplementary material, approximately 11.2 MB.

Supplementary material, approximately 20.8 MB.

Supplementary material, approximately 19.5 MB.

References

  1. Awasthi, S. and Alwine, J.C. 2003. Association of polyadenylation cleavage factor I with U1 snRNP. RNA. 9, 1400–1409.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barnhart, M.D., Moon, S.L., Emch, A.W., Wilusz, C.J., and Wilusz, J. 2013. Changes in cellular mRNA stability, splicing and polyadenylation through HuR protein sequestration by a cytoplasmic RNA virus. Cell Rep. 5, 909–917.CrossRefPubMedGoogle Scholar
  3. Batt, D.B., Luo, Y., and Carmichael, G.G. 1994. Polyadenylation and transcription termination in gene constructs containing multiple tandem polyadenylation signals. Nucleic Acids Res. 22, 2811–2816.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brown, K.M. and Gilmartin, G.M. 2003. A mechanism for the regulation of pre-mRNA 3????processing by human cleavage factor Im. Mol. Cell 12, 1467–1476.CrossRefPubMedGoogle Scholar
  5. Caput, D., Beutler, B., Hartog, K., Thayer, R., Brown-Shimer, S., and Cerami, A. 1986. Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA 83, 1670–1674.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Colgan, D.F. and Manley, J.L. 2016. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11, 2755–2766.CrossRefGoogle Scholar
  7. Curinha, A., Braz, S.O., Pereira-Castro, I., Cruz, A., and Moreira, A. 2014. Implications of polyadenylation in health and disease. Nucleus 5, 508–519.CrossRefPubMedPubMedCentralGoogle Scholar
  8. De, S., Pal, D., and Ghosh, S.K. 2006. Entamoeba histolytica: computational identification of putative microRNA candidates. Exp. Parasitol. 113, 239–243.CrossRefPubMedGoogle Scholar
  9. De Chaumont, F., Dallongeville, S., Chenouard, N., Hervé, N., Pop, S., Provoost, T., Meas-Yedid, V., Pankajakshan, P., Lecomte, T., Le Montagner, Y., et al. 2012. Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9, 690–696.CrossRefPubMedGoogle Scholar
  10. De Vries, H., Rüegsegger, U., Hübner, W., Friedlein, A., Langen, H., and Keller, W. 2000. Human pre-mRNA cleavage factor IIm contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J. 19, 5895–5904.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Derti, A., Garrett-Engele, P., Macisaac, K.D., Stevens, R.C., Sriram, S., Chen, R., Rohl, C.A., Johnson, J.M., and Babak, T. 2012. A quantitative atlas of polyadenylation in five mammals. Genome Res. 22, 1173–1183.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Diamond, L.S., Harlow, D.R., and Cunnick, C.C. 1978. A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans. R. Soc. Trop. Med. Hyg. 72, 431–432.CrossRefPubMedGoogle Scholar
  13. Fan, X.C. and Steitz, J.A. 1998. Overexpression of HuR, a nuclearcytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 17, 3448–3460.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fukumitsu, H., Soumiya, H., and Furukawa, S. 2012. Knockdown of pre-mRNA cleavage factor Im 25 kDa promotes neurite outgrowth. Biochem. Bioph. Res. Co. 425, 848–853.CrossRefGoogle Scholar
  15. Gilmartin, G.M. 2005. Eukaryotic mRNA 3′ processing: a common means to different ends. Genes Dev. 19, 2517–2521.CrossRefPubMedGoogle Scholar
  16. Hernández de la Cruz, O., Marchat, L.A, Guillén, N., Weber, C., López-Rosas, I., Díaz-Chávez, J. Herrera, L., Rojo-Domínguez, A., Orozco, E., and López-Camarillo, C. 2016. Multinucleation and polykaryon formation is promoted by the EhPC4 transcription factor in Entamoeba histolytica. Sci. Rep. 6, 19611.CrossRefPubMedGoogle Scholar
  17. Hernández de la Cruz, O., Muñiz-Lino, M., Guillén, N., Weber, C., Marchat, L.A, López-Rosas, I. Ruíz-García, E., Astudillo-de la Vega, H., Fuentes-Mera, L., Álvarez-Sánchez, E., et al. 2014. Proteomic profiling reveals that EhPC4 transcription factor induces cell migration through up-regulation of the 16-kDa actin-binding protein EhABP16 in Entamoeba histolytica. J. Proteomics 111, 46–58.CrossRefGoogle Scholar
  18. Hon, C.C., Weber, C., Sismeiro, O., Proux, C., Koutero, M., Deloger, M., Das, S., Agrahari, M., Dillies, M.A., Jagla, B., et al. 2013. Quantification of stochastic noise of splicing and polyadenylation in Entamoeba histolytica. Nucleic Acids Res. 41, 1936–1952.CrossRefPubMedGoogle Scholar
  19. Ingham, R.J., Colwill, K., Howard, C., Dettwiler, S., Lim, C.S.H., and Yu, J. 2005. WW domains provide a platform for the assembly of multiprotein networks. Mol. Cell. Biol. 25, 7092–7106.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kalathur, R.K.R., Pinto, J.P., Hernández-Prieto, M.A., Machado, R.S.R., Almeida, D., Chaurasia, G., and Futschik, M.E. 2013. UniHI 7: an enhanced database for retrieval and interactive analysis of human molecular interaction networks. Nucleic Acids Res. 42, D408–D414.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kim, S., Yamamoto, J., Chen, Y., Aida, M., Wada, T., Handa, H., and Yamaguchi, Y. 2010. Evidence that cleavage factor Im is a heterotetrameric protein complex controlling alternative polyadenylation. Genes Cells 15, 1003–1013.CrossRefPubMedGoogle Scholar
  22. Klaff, P., Riesner, D., and Steger, G. 1996. RNA structure and the regulation of gene expression. Plant Mol. Biol. 32, 89–106.CrossRefPubMedGoogle Scholar
  23. Kubo, T., Wada, T., Yamaguchi, Y., Shimizu, A., and Handa, H. 2006. Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 30-UTRs. Nucleic Acids Res. 34, 6264–6271.CrossRefPubMedPubMedCentralGoogle Scholar
  24. López-Camarillo, C., Luna-Arias, J.P., Marchat, L.A., and Orozco, E. 2003. EhPgp5 mRNA stability is a regulatory event in the Entamoeba histolytica multidrug resistance phenotype. J. Biol. Chem. 278, 11273–11280.CrossRefPubMedGoogle Scholar
  25. López-Camarillo, C., Orozco, E., and Marchat, L.A. 2005. Entamoeba histolytica: Comparative genomics of the pre-mRNA 3′ end processing machinery. Exp. Parasitol. 110, 184–190.CrossRefPubMedGoogle Scholar
  26. Okagaki, L.H., Strain, A.K., Nielsen, J.N., Charlier, C., Baltes, N.J., Chrétien, F., Heitman, F., Dromer, F., and Nielsen, K. 2010. Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog. 6, e1000953.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ospina-Villa, J.D., Zamorano-Carrillo, A., López-Camarillo, C., Castañon-Sánchez, C.A., Soto-Sánchez, J., Ramírez-Moreno, M.E., and Marchat, L.A. 2015. Amino acid residues Leu135 and Tyr236 are required for RNA binding activity of CFIm25 in Entamoeba histolytica. Biochimie 115, 44–51.CrossRefPubMedGoogle Scholar
  28. Pezet-Valdez, M., Fernández-Retana, J., Ospina-Villa, J.D., Ramírez-Moreno, M.E., Orozco, E., Charcas-López, S., Soto-Sánchez, J., Mendoza-Hernández, G., López-Casamicha, M., López-Camarillo, C., et al. 2013. The 25 kDa subunit of cleavage factor Im is a RNAbinding protein that interacts with the poly(A) polymerase in Entamoeba histolytica. PLoS One 8, e67977.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ralston, K.S. and Petri, W.A. Jr. 2011. Tissue destruction and invasion by Entamoeba histolytica. Trends Parasitol. 27, 254–263.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sikorski, T.W., Ficarro, S.B., Holik, J., Kim, T., Rando, O.J., Marto, J.A., and Buratowski, S. 2011. Sub1 and RPA associate with RNA polymerase II at different stages of transcription. Mol. Cell. 44, 397–409.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Solis, C.F., Santi-Rocca, J., Perdomo, D., Weber, C., and Guillén, N. 2009. Use of bacterially expressed dsRNA to down regulate Entamoeba histolytica gene expression. PLoS One 4, e8424.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Takiff, H.E., Chen, S.M., and Court, D.L. 1989. Genetic analysis of the rnc operon of Escherichia coli. J. Bacteriol. 171, 2581–2590.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tourrière, H., Chebli, K., and Tazi, J. 2002. mRNA degradation machines in eukaryotic cells. Biochimie 84, 821–837.CrossRefPubMedGoogle Scholar
  35. Vasudevan, S., Tong, Y., and Steitz, J.A. 2007. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934.CrossRefPubMedGoogle Scholar
  36. Vinayagam, A., Stelzl, U., Foulle, R., Plassmann, S., Zenkner, M., Timm, J., Assmus, H.E., Andrade-Navarro, M.A., and Wanker, E.E. 2011. A directed protein Interaction network for investigating intracellular signal transduction. Science Signaling. 4, rs8.CrossRefPubMedGoogle Scholar
  37. Wang, S.W., Asakawa, K., Win, T.Z., Toda, T., and Norbury, C.J. 2005. Inactivation of the pre-mRNA cleavage and polyadenylation factor Pfs2 in fission yeast causes lethal cell cycle defects. Mol. Cell. Biol. 25, 2288–2296.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yang, Q., Coseno, M., Gilmartin, G.M., and Doublié, S. 2011. Crystal structure of a human cleavage factor CFIm25/CFIm68/RNA complex provides an insight into poly(A) site recognition and RNA looping. Structure 19, 368–377.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zamorano, A., López-Camarillo, C., Orozco, E., Weber, C., Guillén, N., and Marchat, L.A. 2008. In silico analysis of EST and genomic sequences allowed the prediction of cis-regulatory elements for Entamoeba histolytica mRNA polyadenylation. Comput. Biol. Chem. 32, 256–263.CrossRefPubMedGoogle Scholar
  40. Zhang, W., Wagner, B.J., Ehrenman, K., Schaefer, A.W., DeMaria, C.T., Crater, D., DeHaven, K., Long, L., and Brewer, G. 1993. Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol. Cell. Biol. 13, 7652–7665.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Juan David Ospina-Villa
    • 1
  • Nancy Guillén
    • 2
  • Cesar Lopez-Camarillo
    • 3
  • Jacqueline Soto-Sanchez
    • 1
  • Esther Ramirez-Moreno
    • 1
  • Raul Garcia-Vazquez
    • 1
  • Carlos A. Castañon-Sanchez
    • 4
  • Abigail Betanzos
    • 5
  • Laurence A. Marchat
    • 1
    Email author
  1. 1.Instituto Politécnico Nacional — ENMHCiudad de MéxicoMexico
  2. 2.Institut PasteurUnité d’Analyses d’Images BiologiquesParisFrance
  3. 3.Universidad Autónoma de la Ciudad de México — Posgrado en Ciencias GenómicasCiudad de MéxicoMexico
  4. 4.Hospital Regional de Alta EspecialidadOaxacaMexico
  5. 5.Cátedras, CONACYT, Departamento de Infectómica y Patogénesis MolecularCINVESTAV-IPNCiudad de MéxicoMexico

Personalised recommendations