Advertisement

Journal of Microbiology

, Volume 55, Issue 10, pp 792–799 | Cite as

Construction of a genetic linkage map and QTL mapping of agronomic traits in Auricularia auricula-judae

  • Li-Xin Lu
  • Fang-Jie Yao
  • Peng Wang
  • Ming Fang
  • You-Min ZhangEmail author
  • Wei-Tong Zhang
  • Xiang-Hui Kong
  • Jia Lu
Microbial Genetics, Genomics and Molecular Biology

Abstract

Auricularia auricula-judae is a traditional edible fungus that is cultivated widely in China. In this study, a genetic linkage map for A. auricula-judae was constructed using a mapping population consisting of 138 monokaryons derived from a hybrid strain (A119-5). The monokaryotic parent strains A14-5 and A18-119 were derived from two cultivated varieties, A14 (Qihei No. 1) and A18 (Qihei No. 2), respectively. In total, 130 simple sequence repeat markers were mapped. These markers were developed using the whole genome sequence of A. auricula-judae and amplified in A14-5, A18- 119, and the mapping population. The map consisted of 11 linkage groups (LGs) spanning 854 cM, with an average interval length of 6.57 cM. A testcross population was derived from crossing between the monokaryon A184-57 (from the wild strain A184 as a tester strain) and the mapping population. Important agronomic trait-related QTLs, including mycelium growth rate on potato dextrose agar for the mapping population, mycelium growth rate on potato dextrose agar and sawdust for the testcross population, growth period (days from inoculation to fruiting body harvesting), and yield for the testcross population, were identified using the composite interval mapping method. Six mycelium growth raterelated QTLs were identified on LG1 and LG4, two growth period-related QTLs were identified on LG2, and three yieldrelated QTLs were identified on LG2 and LG6. The results showed no linkage relationship between mycelium growth rate and growth period. The present study provides a foundation for locating genes for important agronomic characteristics in A. auricula-judae in the future.

Keywords

Auricularia auricula-judae simple sequence repeat genetic linkage map quantitative trait locus mycelium growth rate growth period yield 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2017_7241_MOESM1_ESM.pdf (367 kb)
Supplementary material, approximately 367 KB.

References

  1. Au, C.H., Man, K.C., Man, C.W., Chu, A.K.K., Law, P.T.W., and Kwan, H.S. 2013. Rapid genotyping by low-coverage resequencing to construct genetic linkage maps of fungi: a case study in Lentinula edodes. BMC Res. Notes 6, 307.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chen, Y., Yao, F.J., Zhang, Y.M., Chen, L., Cong, S., and Fang, M. 2014a. A new Auricularia auricula cultivar‘Jihei 3’. Acta Hortic. Sinica 41, 1751–1752.Google Scholar
  3. Chen, Y., Yao, F.J., Zhang, Y.M., and Fang, M. 2014b. Numerical classification of cultivated germplasm of Auricularia auricula-judae. Mycosystema 33, 984–996.Google Scholar
  4. Du, P., Cui, B.K., Zhang, C.F., and Dai, Y.C. 2013. Genetic diversity of wild Auricularia auricula-judae revealed by ISSR analysis. Biochem. Syst. Ecol. 48, 199–205.CrossRefGoogle Scholar
  5. Dutech, C., Enjalbert, J., Fournier, E., Delmotte, F., Barrès, B., Carlier, J., Tharreau, D., Giraud, T. 2007. Challenges of microsatellite isolation in fungi. Fungal Genet. Biol. 44, 933–949.CrossRefPubMedGoogle Scholar
  6. Fan, X.Z., Zhou, Y., Xiao, Y., and Bian, Y.B. 2013. Cloning and characterization of two allelic glyceraldehyde-3-phosphate dehydrogenase genes in Auricularia auricula-judae. World J. Microbiol. Biotechnol. 30, 181–189.CrossRefPubMedGoogle Scholar
  7. Fan, X.Z., Zhou, Y., Xiao, Y., Xu, Z., and Bian, Y.B. 2014. Cloning, expression and phylogenetic analysis of a divergent laccase multigene family in Auricularia auricula-judae. Microbiol. Res. 169, 453–462.CrossRefPubMedGoogle Scholar
  8. Fang, M., Yao, F.J., Wang, X., Chen, Y., Zhang, Y.M., and Ren, Y.Y. 2013. A new Auricularia auricula cultivar‘Jihei 2’. Acta Hortic. Sinica 40, 1215–1216.Google Scholar
  9. Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R.A., Henrissat, B., Martínez, A.T., Otillar, R., Spatafora, J.W., Yadav., J.S., et al. 2012. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719.CrossRefPubMedGoogle Scholar
  10. Foulongne-Oriol, M. 2012. Genetic linkage mapping in fungi: current state, applications, and future trends. Appl. Microbiol. Biotechnol. 95, 891–904.CrossRefPubMedGoogle Scholar
  11. Foulongne-Oriol, M., Rocha de Brito, M., Cabannes, D., Clément, A., Spataro, C., Moinard, M., Souza Dias, E., Callac, P., and Savoie, J. 2016. The genetic linkage map of the medicinal mushroom Agaricus subrufescens reveals highly conserved macrosynteny with the congeneric species Agaricus bisporus. 3G-Genes Genom. Genet. 11, 1217–1226.Google Scholar
  12. Foulongne-Oriol, M., Spataro, C., Cathalot, V., Monllor, S., and Savoie, J.M. 2010. An expanded genetic linkage map of an intervarietal Agaricus bisporus var. bisporus × A. bisporus var. burnettii hybrid based on AFLP, SSR and CAPS markers sheds light on the recombination behaviour of the species. Fungal Genet. Biol. 47, 226–236.CrossRefPubMedGoogle Scholar
  13. Gong, W.B., Liu, W., Lu, Y.Y., Bian, Y.B., Yan, Z., Kwan, H.S., Cheung, M.K., and Xiao, Y. 2014a. Constructing a new integrated genetic linkage map and mapping quantitative trait loci for vegetative mycelium growth rate in Lentinula edodes. Fungal Biol. 118, 295–308.CrossRefPubMedGoogle Scholar
  14. Gong, W.B., Xu, R., Xiao, Y., Zhou, Y., and Bian, Y.B. 2014b. Phenotypic evaluation and analysis of important agronomic traits in the hybrid and natural populations of Lentinula edode. Sci. Hortic. 179, 271–276.CrossRefGoogle Scholar
  15. Im, C.H., Park, Y.H., Hammel, K.E., Park, B., Kwon, S.W., Ryu, H., and Ryu, J.S. 2016. Construction of a genetic linkage map and analysis of quantitative trait loci associated with the agronomically important traits of Pleurotus eryngii. Fungal Genet. Biol. 92, 50–64.CrossRefPubMedGoogle Scholar
  16. Joshi, C.P. and Chiang, V.L. 1998. Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Mol. Biol. 37, 663–674.CrossRefPubMedGoogle Scholar
  17. Kerrigan, R.W., Royer, J.C., Baller, L.M., Kohli, Y., Horgen, P.A., and Anderson, J.B. 1993. Meiotic behavior and linkage relationships in the secondarily homothallic fungus Agaricus bisporus. Genet. 133, 225–236.Google Scholar
  18. Khaskheli, S.G., Zheng, W., Sheikh, S.A., Khaskheli, A.A., Liu, Y., Soomro, A.H., Feng, X., Sauer, M.B., Wang, Y.F., and Huang, W. 2015. Characterization of Auricularia auricula polysaccharides and its antioxidant properties in fresh and pickled product. Int. J. Biol. Macromol. 81, 387–395.CrossRefPubMedGoogle Scholar
  19. Labbé, J. and Tacon, F.L. 2008. A genetic linkage map for the ectomycorrhizal fungus Laccaria bicolor and its alignment to the whole-genome sequence assemblies. New Phytol. 180, 316–328.CrossRefPubMedGoogle Scholar
  20. Larraya, L.M., Alfonso, M., Pisabarro, A.G., and Ramírez, L. 2003. Mapping of genomic regions (quantitative trait loci) controlling production and quality in industrial cultures of the edible basidiomycete Pleurotus ostreatus. Appl. Environ. Microbiol. 69, 3617–3625.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Larraya, L.M., Idareta, E., Arana, D., Ritter, E., Pisabarro, A.G., and Ramírez, L. 2002. Quantitative trait loci controlling vegetative growth rate in the edible basidiomycete Pleurotus ostreatus. Appl. Environ. Microbiol. 68, 1109–1114.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Larraya, L.M., Pérez, G., Ritter, E., Pisabarro, A.G., and Ramírez, L. 2000. Genetic linkage map of the edible basidiomycete Pleurotus ostreatus. Appl. Environ. Microbiol. 66, 5290–5300.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li, Y. 2001. Wood ear of China, pp. 3–10. Changchun Press, Changchun, Jilin, China.Google Scholar
  24. Li, L., Li, J., Zou, L., Bai, S.Y., Niu, L.M., and Ma, Y.K. 2007. RAPD analysis of genetic diversity of nine strains of Auricularia auricula cultivated in Heilongjiang Province. J. Forest. Res. 18, 136–138.CrossRefGoogle Scholar
  25. Li, H.M., Shang, X.D., Tan, Q., Pan, Y.J., and Chen, M.J. 2009. Genetic differentiation of self-crossing S1 generations of Pleurotus eryngii. Mycosystema 28, 541–547.Google Scholar
  26. Liu, G.J. 2011. Master’s thesis. Jilin Agricultural University, Changchun, Jilin, China.Google Scholar
  27. Lu, Y.P., Lian, L.D., Guo, L.X., Xie, B., Wang, W., Chen, B.Z., Peer, A.F., Li, S.J., Wu, T.J., and Xie, B.G. 2015. The accordant trend of both parameters (rgs expression and cAMP content) follows the pattern of development of fruiting body in Volvariella volvacea. Currt. Microbiol. 71, 1–6.CrossRefGoogle Scholar
  28. Miyazaki, K., Huang, F., Zhang, B., Shiraishi, S., Sakai, M., Shimaya, C., and Kazuo, S. 2008. Genetic map of a basidiomycete fungus, Lentinula edodes (shiitake mushroom), constructed by tetrad analysis. Breed. Sci. 58, 23–30.CrossRefGoogle Scholar
  29. Murray, M.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4326.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Okuda, Y., Ueda, J., Obatake, Y., Murakami, S., Fukumasa, Y., and Matsumoto, T. 2012. Construction of a genetic linkage map based on amplified fragment length polymorphism markers and development of sequence-tagged site markers for marker-assisted selection of the sporeless trait in the oyster mushroom (Pleurotus eryngii). Appl. Environ. Microbiol. 78, 1496–1504.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Reza, A., Choi, M.J., Damte, D., Jo, W.S., Lee, S.J., Lee, J.S., and Park, S.C. 2011. Comparative antitumor activity of different solvent fractions from an Auricularia auricula-judae ethanol extract in P388D1 and sarcoma 180 cells. Toxicol. Res. 27, 77–83.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rozen, S. and Skaletsky, H. 2000. Primer 3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.PubMedGoogle Scholar
  33. Salmones, D., Gaitán-Hernández, R., Pérez, R., and Guzmán, G. 1997. Studies on genus Pleurotus. VIII. Interaction between mycelial growth and yield. Rev. Iberoam. Micol. 14, 173–176.PubMedGoogle Scholar
  34. Sivolapova, A.B., Shnyreva, A.V., Sonnenberg, A., and Baars, I. 2012. DNA marking of some quantitative trait loci in the cultivated edible mushroom Pleurotus ostreatus (Fr.) Kumm. Russ. J. Genet. 48, 383–389.CrossRefGoogle Scholar
  35. Sun, S.J., Zhang, X.J., Chen, W.X., Zhang, L.Y., and Zhu, H. 2016. Production of natural edible melanin by Auricularia auricula and its physicochemical properties. Food Chem. 196, 486–492.CrossRefPubMedGoogle Scholar
  36. Terashima, K., Matsumoto, T., Hayashi, E., and Fukumasa-Nakai, Y. 2002. A genetic linkage map of Lentinula edodes (shiitake) based on AFLP markers. Mycol. Res. 106, 911–917.CrossRefGoogle Scholar
  37. Van Ooijen, J.W. 2006. JoinMap 4.0: Software for the calculation of genetic Linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands.Google Scholar
  38. Wang, X.E. 2013. Ph. D. thesis. Jilin Agricultural University, Changchun, Jilin, China.Google Scholar
  39. Wang, S., Basten, C., and Zeng, Z.B. 2012. Windows QTL cartographer 2.5. Raleigh, NC: Department of Statistics, North Carolina State University. USA.Google Scholar
  40. Wang, X.E., Zhang, Y.M., Chen, Y., Fang, M., Wang, W., and Yao, F.J. 2013. A new Auricularia auricula cultivar‘Jihei 1’. Acta Hortic. Sinica 40, 601–602.Google Scholar
  41. Wieland, T. and Chen, C.K. 1999. Regulators of G-protein signaling: a novel protein family involved in timely deactivation and desensitization of signalling via heterotrimeric G proteins. Naunyn-Schmiedeberg’s Arch. Pharmacol. 360, 14–26.CrossRefGoogle Scholar
  42. Wu, F., Yuan, Y., Malysheva, V.F., Du, P., and Dai, Y.C. 2014. Species clarification of the most important and cultivated Auricularia mushroom “Heimuer”: evidence from morphological and molecular data. Phytotaxa 186, 241–253.CrossRefGoogle Scholar
  43. Xiang, X.J., Li, C., Li, L., Bian, Y.B., Kwan, H.S., Nong, W.Y., Cheung, M.K., and Xiao, Y. 2016. Genetic diversity and population structure of Chinese Lentinula edodes revealed by InDel and SSR markers. Mycol. Prog. 15, 37.CrossRefGoogle Scholar
  44. Yao, F.J. and Bian, Y.B. 2011. Graphic illustration on key cultivation techniques of Auricularia auricula-judae, pp. 1–78. China Agriculture Press, Beijing, China.Google Scholar
  45. Yao, F.J., Zhang, Y.M., and Li, Y. 2005. Analysis of the gene linkage of Pleurotus citrinopileatus by use of auxotrophic mutation. Mycosystema 24, 36–41.Google Scholar
  46. Yao, F.J., Zhang, Y.M., Lu, L.X., and Fang, M. 2015. Research progress on genetics and breeding of Auricularia auricula-judae. J. Fungal Res. 13, 125–128.Google Scholar
  47. Zeng, Z.B. 1994. Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.PubMedPubMedCentralGoogle Scholar
  48. Zhang, P. 2011. Master’s thesis. Jilin Agricultural University, Changchun, Jilin, China.Google Scholar
  49. Zhang, R.Y., Hu, D.D., Gu, J.G., Hu, Q.X., Zuo, X.M., and Wang, H.X. 2012. Development of SSR markers for typing cultivars in the mushroom Auricularia auricula-judae. Mycol. Prog. 11, 587–592.CrossRefGoogle Scholar
  50. Zhang, R.Y., Hu, D.D., Zuo, X.M., and Hu, Q.X. 2010. Strategies to develop SSR markers in edible mushrooms: a review. J. Fungal Res. 8, 239–244.Google Scholar
  51. Zhang, Y., Yao, A.Y., and Song, K.Y. 2016. Torrefaction of cultivation residue of Auricularia auricula-judae to obtain biochar with enhanced fuel properties. Bioresour. Technol. 206, 211–216.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Li-Xin Lu
    • 1
  • Fang-Jie Yao
    • 1
    • 2
  • Peng Wang
    • 1
  • Ming Fang
    • 2
  • You-Min Zhang
    • 2
    Email author
  • Wei-Tong Zhang
    • 1
  • Xiang-Hui Kong
    • 1
  • Jia Lu
    • 2
  1. 1.Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal FungiJilin Agricultural UniversityChangchunP. R. China
  2. 2.College of HorticultureJilin Agricultural UniversityChangchunP. R. China

Personalised recommendations