Advertisement

Journal of Microbiology

, Volume 55, Issue 7, pp 525–530 | Cite as

Mucilaginibacter hankyongensis sp. nov., isolated from soil of ginseng field Baekdu Mountain

  • Qingmei Liu
  • Muhammad Zubair Siddiqi
  • Mi-Sun Kim
  • Sang Yong Kim
  • Wan-Taek ImEmail author
Microbial Systematics and Evolutionary Microbiology

Abstract

A Gram-negative, non-motile, aerobic, and rod-shaped bacterial strain designated as BR5-28T was isolated from the soil of a ginseng field at Baekdu Mountain Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BR5-28T grew at 10–42°C (optimum temperature, 30°C) and pH 5.5–8.5 (optimum pH, 7.0) on R2A agar medium without additional NaCl supplementation. Strain BR5- 28T exhibited β-glucosidase activity, which was responsible for its ability to transform the ginsenosides Rb1 and Rd (the two dominant active components of ginseng) to compound-K. Based on 16S rRNA gene phylogeny, the novel strain showed a new branch within the genus Mucilaginibacter of the family Sphingobacteriaceae, and formed clusters with Mucilaginibacter frigoritolerans FT22T (95.8%) and Mucilaginibacter gotjawali SA3-7T (95.7%). The G+C content of the genomic DNA was 45.1%. The predominant respiratory quinone was MK-7 and the major fatty acids were summed feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c), iso-C15:0 and anteiso-C15:0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Strain BR5-28T was differentiated genotypically and phenotypically from the recognized species of the genus Mucilaginibacter. The isolate therefore represents a novel species, for which the name Mucilaginibacter hankyongensis sp. nov. is proposed, with the type strain BR5-28T (=KCTC 22274T =DSM 21151T).

Keywords

16S rRNA gene polyphasic taxonomy Mucilaginibacter hankyongensis ginsenoside 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atlas, R.M. 1993. Handbook of Microbiological Media. CRC Press, Boca Raton, Florida, USA.Google Scholar
  2. Baik, K.S., Park, S.C., Kim, E.M., Lim, C.H., and Seong, C.N. 2010. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int. J. Syst. Evol. Microbiol. 60, 134–139.CrossRefPubMedGoogle Scholar
  3. Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.PubMedPubMedCentralGoogle Scholar
  4. Cappuccino, J.G. and Sherman, N. 2002. Microbiology: a laboratory manual, 6th ed. Pearson Education, Inc., California, USA.Google Scholar
  5. Chen, W.M., Che, N.Y.L., and Sheu, S.Y. 2016. Mucilaginibacter roseus sp. nov., isolated from a freshwater river. Int. J. Syst. Evol. Microbiol. 66, 1112–1118.CrossRefPubMedGoogle Scholar
  6. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefPubMedGoogle Scholar
  7. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  8. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.Google Scholar
  9. Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.CrossRefGoogle Scholar
  10. Jia, L. and Zhao, Y. 2009. Current evaluation of the millennium phytomedicine- ginseng (I): Etymology, pharmacognosy, phytochemistry, market and regulations. Curr. Med. Chem. 16, 2475–2484.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Joung, Y., Kang, H., Lee, B.I., Kim, H., Joh, K., and Kim, K.J. 2015. Mucilaginibacter aquaedulcis sp. nov., isolated from fresh water. Int. J. Syst. Evol. Microbiol. 65, 698–703.CrossRefPubMedGoogle Scholar
  12. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.CrossRefPubMedGoogle Scholar
  13. Kim, J.K., Kang, M.S., Park, S.C., Kim, K.M., Choi, K., Yoon, M.H., and Im, W.T. 2015. Sphingosinicella ginsenosidimutans sp. nov., with ginsenoside converting activity. J. Microbiol. 53, 435–441.CrossRefPubMedGoogle Scholar
  14. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press, Cambridge, New York, USA.Google Scholar
  15. Lee, K.C., Kim, K.K., Eom, M.K., Kim, J.S., Kim, D.S., KO, S.H., and Lee, J.S. 2015. Mucilaginibacter gotjawali sp. nov., isolated from soil of a lava forest. Int. J. Syst. Evol. Microbiol. 65, 952–958.CrossRefPubMedGoogle Scholar
  16. Liu, W.K., Xu, S.X., and Che, C.T. 2000. Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci. 67, 1297–1306.CrossRefPubMedGoogle Scholar
  17. Männistö, M.K., Tiirola, M., McConnell, J., and Häggblom, M.M. 2010. Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. Int. J. Syst. Evol. Microbiol. 60, 2849–2856.CrossRefPubMedGoogle Scholar
  18. Mesbah, M., Premachandran, U., and Whitman, W. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.CrossRefGoogle Scholar
  19. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  20. Moore, D.D. and Dowhan, D. 1995. Preparation and analysis of DNA, pp. 2–11.In Ausubel, F.W., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.), Current Protocols in Molecular Biology. Wiley, New York, USA.Google Scholar
  21. Pankratov, T.A., Tindall, B.J., Liesack, W., and Dedysh, S.N. 2007. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic sphagnum peat bog. Int. J. Syst. Evol. Microbiol. 57, 2349–2354.CrossRefPubMedGoogle Scholar
  22. Perry, L.B. 1973. Gliding motility in some non-spreading flexibacteria. J. Appl. Bacteriol. 36, 227–232.CrossRefPubMedGoogle Scholar
  23. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  24. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.Google Scholar
  25. Siddiqi, M.Z. and Im, W.T. 2016. Pseudobacter ginsenosidimutans gen. nov., sp. nov., isolated from ginseng cultivating soil. Int. J. Syst. Evol. Microbiol. 66, 3449–3455.CrossRefPubMedGoogle Scholar
  26. Siddiqi, M.Z., Cui, C.H., Park, S.K., Han, N.S., Kim, S.C., and Im, W.T. 2017a. Comparative analysis of the expression level of recombinant ginsenoside-transforming β-glucosidase in GRAS hosts and mass production of the ginsenoside Rh2-Mix. PLoS One 12, e0176098.CrossRefGoogle Scholar
  27. Siddiqi, M.Z., Im, W.T., and Aslam, Z. 2017b. Arachidicoccus ginsenosidivorans sp. nov., with ginsenoside converting activity isolated from ginseng cultivating soil. Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.001720Google Scholar
  28. Siddiqi, M.Z., Liu, Q., Kang, M.S., Kim, M.S., and Im, W.T. 2016a. Anseongella ginsenosidimutans gen. nov., sp. nov., isolated from soil cultivating ginseng. Int. J. Syst. Evol. Microbiol. 66, 1125–1130.CrossRefGoogle Scholar
  29. Siddiqi, M.Z., Muhammad Shafi, S., Choi, K.D., and Im, W.T. 2016b. Panacibacter ginsenosidivorans gen. nov., sp. nov., with ginsenoside converting activity isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 66, 4039–4045.CrossRefPubMedGoogle Scholar
  30. Siddiqi, M.Z., Muhammad Shafi, S., Choi, K.D., Im, W.T., and Aslam, Z. 2016c. Sphingobacterium jejuense sp. nov., with ginsenosideconverting activity, isolated from compost. Int. J. Syst. Evol. Microbiol. 66, 4433–4439.CrossRefPubMedGoogle Scholar
  31. Siddiqi, M.H., Siddiqi, M.Z., Ahn, S., Kang, S., Kim, Y.J., Veerappan, K., and Yang, D.C. 2014. Stimulative effect of ginsenosides Rg5:Rk1 on murine osteoblastic MC3T3-E1 cells. Phytother. Res. 28, 1447–1455.CrossRefPubMedGoogle Scholar
  32. Siddiqi, M.Z., Siddiqi, M.H., Kim, Y.J., Jin, Y., Huq, M.A., and Yang, D.C. 2015. Effect of fermented red ginseng extract enriched in ginsenoside Rg3 on the differentiation and mineralization of preosteoblastic MC3T3-E1 cells. J. Med. Food. 18, 542–548.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tang, J., Huang, J., Qiao, Z., Wang, R., and Wang, G. 2016. Mucilaginibacter pedocola sp. nov., isolated from a heavy-metal-contaminated paddy field. Int. J. Syst. Evol. Microbiol. 66, 4033–4038.CrossRefPubMedGoogle Scholar
  34. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tawab, M.A., Bahr, U., Karas, M., Wurglics, M., and Schubert-Zsilavecz, M. 2003. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31, 1065–1071.CrossRefPubMedGoogle Scholar
  36. Ten, L.N., Im, W.T., Kim, M.K., Kang, M.S., and Lee, S.T. 2004. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J. Microbiol. Methods 56, 375–382.CrossRefPubMedGoogle Scholar
  37. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.CrossRefGoogle Scholar
  38. Urai, M., Aizawa, T., Nakagawa, Y., Nakajima, M., and Sunairi, M. 2008. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int. J. Syst. Evol. Microbiol. 58, 2046–2050.CrossRefPubMedGoogle Scholar
  39. Wang, W., Rayburn, E.R., Hao, M., Zhao, Y., Hill, D.L., Zhang, R., and Wang, H. 2008. Experimental therapy of prostate cancer with novel natural product anti-cancer ginsenosides. Prostate 68, 809–819.CrossRefPubMedGoogle Scholar
  40. Xu, Q.F., Fang, X.L., and Chen, D.F. 2003. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J. Ethnopharmacol. 84, 187–192.CrossRefPubMedGoogle Scholar
  41. Zhao, X., Wang, J., Li, J., Fu, L., Gao, J., Du, X., Bi, H., Zhou, Y., and Tai, G. 2009. Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. itFulvia fulva). J. Ind. Microbiol. Biotechnol. 36, 721–726.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Qingmei Liu
    • 1
    • 2
  • Muhammad Zubair Siddiqi
    • 1
    • 2
  • Mi-Sun Kim
    • 3
  • Sang Yong Kim
    • 4
  • Wan-Taek Im
    • 1
    • 2
    Email author
  1. 1.Department of BiotechnologyHankyong National UniversityAnseongRepublic of Korea
  2. 2.Center for Genetic InformationGraduate School of Bio and Information Technology, Hankyong National UniversityAnseongRepublic of Korea
  3. 3.Clean Fuel Research CenterKorea Institute of Energy ResearchDaejeonRepublic of Korea
  4. 4.Department of Food Science & Bio TechnologyShinansan UniversityAnsanRepublic of Korea

Personalised recommendations