Journal of Microbiology

, Volume 55, Issue 11, pp 862–870 | Cite as

Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments

  • Shiling Zheng
  • Bingchen Wang
  • Fanghua LiuEmail author
  • Oumei WangEmail author
Microbial Ecology and Environmental Microbiology


Minerals that contain ferric iron, such as amorphous Fe(III) oxides (A), can inhibit methanogenesis by competitively accepting electrons. In contrast, ferric iron reduced products, such as magnetite (M), can function as electrical conductors to stimulate methanogenesis, however, the processes and effects of magnetite production and transformation in the methanogenic consortia are not yet known. Here we compare the effects on methanogenesis of amorphous Fe (III) oxides (A) and magnetite (M) with ethanol as the electron donor. RNA-based terminal restriction fragment length polymorphism with a clone library was used to analyse both bacterial and archaeal communities. Iron (III)-reducing bacteria including Geobacteraceae and methanogens such as Methanosarcina were enriched in iron oxide-supplemented enrichment cultures for two generations with ethanol as the electron donor. The enrichment cultures with A and non-Fe (N) dominated by the active bacteria belong to Veillonellaceae, and archaea belong to Methanoregulaceae and Methanobacteriaceae, Methanosarcinaceae (Methanosarcina mazei), respectively. While the enrichment cultures with M, dominated by the archaea belong to Methanosarcinaceae (Methanosarcina barkeri). The results also showed that methanogenesis was accelerated in the transferred cultures with ethanol as the electron donor during magnetite production from A reduction. Powder X-ray diffraction analysis indicated that magnetite was generated from microbial reduction of A and M was transformed into siderite and vivianite with ethanol as the electron donor. Our data showed the processes and effects of magnetite production and transformation in the methanogenic consortia, suggesting that significantly different effects of iron minerals on microbial methanogenesis in the iron-rich coastal riverine environment were present.


coastal riverine sediments magnetite ferrous iron methane iron (III)-reducing bacteria methanogens 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2017_7104_MOESM1_ESM.pdf (159 kb)
Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments


  1. Achtnich, C., Bak, F., and Conrad, R. 1995. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol. Fertil. Soils 19, 65–72.CrossRefGoogle Scholar
  2. Boga, H.I., Ludwig, W., and Brune, A. 2003. Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from the gut of a soil-feeding termite. Int. J. Syst. Evol. Microbiol. 53, 1397–1404.CrossRefPubMedGoogle Scholar
  3. Bokulich, N.A., Bamforth, C.W., and Mills, D.A. 2012. A review of molecular methods for microbial community profiling of beer and wine. J. Am. Soc. Brew. Chem. 70, 150–162.Google Scholar
  4. Bond, D.R. and Lovley, D.R. 2002. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ. Microbiol. 4, 115–124.CrossRefPubMedGoogle Scholar
  5. Cadillo-Quiroz, H., Yavitt, J.B., and Zinder, S.H. 2009. Methanosphaerula palustris gen. nov., sp. nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. Int. J. Syst. Evol. Microbiol. 59, 928–935.CrossRefPubMedGoogle Scholar
  6. Cummings, D.E., March, A.W., Bostick, B., Spring, S., Caccavo, F., Fendorf, S., and Rosenzweig, R.F. 2000. Evidence for microbial Fe (III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d’Alene, Idaho). Appl. Environ. Microbiol. 66, 154–162.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dong, H.L., Fredrickson, J.K., Kennedy, D.W., Zachara, J.M., Kukkadapu, R.K., and Onstott, T.C. 2000. Mineral transformation associated with the microbial reduction of magnetite. Chem. Geol. 169, 299–318.CrossRefGoogle Scholar
  8. Gonnerman, M.C., Benedict, M.N., Feist, A.M., Metcalf, W.W., and Price, N.D. 2013. Genomically and biochemically accurate metabolic reconstruction of Methanosarcina barkeri Fusaro, iMG746. Biotech. J. 8, 1070–1129.CrossRefGoogle Scholar
  9. Hori, T., Aoyagi, T., Itoh, H., Narihiro, T., Oikawa, A., Suzuki, K., Ogata, A., Friedrich, M.W., Conrad, R., and Kamagata, Y. 2015. Isolation of microorganisms involved in reduction of crystalline iron (III) oxides in natural environments. Front. Microbiol. 6, 386.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Jablonski, S., Rodowicz, P., and Lukaszewicz, M. 2015. Methanogenic archaea database containing physiological and biochemical characteristics. Int. J. Syst. Evol. Microbiol. 65, 1360–1368.CrossRefPubMedGoogle Scholar
  11. Kang, Y.S., Risbud, S., Rabolt, J.F., and Stroeve, P. 1996. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater. 8, 2209–2211.CrossRefGoogle Scholar
  12. Kato, S., Hashimoto, K., and Watanabe, K. 2012a. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals. Environ. Microbiol. 14, 1646–1654.CrossRefPubMedGoogle Scholar
  13. Kato, S., Hashimoto, K., and Watanabe, K. 2012b. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl. Acad. Sci. USA 109, 10042–10046.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kern, T., Linge, M., and Rother, M. 2015. Methanobacterium aggregans sp. nov., a hydrogenotrophic methanogenic archaeon isolated from an anaerobic digester. Int. J. Syst. Evol. Microbiol. 65, 1975–1980.CrossRefPubMedGoogle Scholar
  15. Kostka, J.E. and Nealson, K.H. 1995. Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29, 2535–2540.CrossRefPubMedGoogle Scholar
  16. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefPubMedGoogle Scholar
  17. Li, H., Chang, J., Liu, P., Fu, L., Ding, D., and Lu, Y. 2015. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environ. Microbiol. 17, 1533–1547.CrossRefPubMedGoogle Scholar
  18. Liu, F. and Conrad, R. 2010. Thermoanaerobacteriaceae oxidize acetate in methanogenic rice field soil at 50 degrees C. Environ. Microbiol. 12, 2341–2354.PubMedGoogle Scholar
  19. Lovley, D.R. and Phillips, E.J.P. 1986. Organic-matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51, 683–689.PubMedPubMedCentralGoogle Scholar
  20. Oren, A. 2014. The family Methanosarcinaceae, pp. 259–281. In Rosenberg, E., De Long, E.F., Lory, S., Stackebrandt, E., and Thomson, F. The Prokaryotes. Springer Berlin, Heidelberg, Germany.Google Scholar
  21. Peng, Q.A., Shaaban, M., Wu, Y., Hu, R., Wang, B., and Wang, J. 2016. The diversity of iron reducing bacteria communities in subtropical paddy soils of China. Appl. Soil Ecol. 101, 20–27.CrossRefGoogle Scholar
  22. Piepenbrock, A., Dippon, U., Porsch, K., Appel, E., and Kappler, A. 2011. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations. Geochim. Cosmochim. Acta 75, 6844–6858.CrossRefGoogle Scholar
  23. Rotaru, A.E., Shrestha, P.M., Liu, F., Markovaite, B., Chen, S., Nevin, K., and Lovley, D. 2014. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 80, 4599–4605.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Schirmack, J., Mangelsdorf, K., Ganzert, L., Sand, W., Hillebrand-Voiculescu, A., and Wagner, D. 2014. Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake. Int. J. Syst. Evol. Microbiol. 64, 522–527.CrossRefPubMedGoogle Scholar
  25. Shrestha, P.M., Kube, M., Reinhardt, R., and Liesack, W. 2009. Transcriptional activity of paddy soil bacterial communities. Environ. Microbiol. 11, 960–970.CrossRefPubMedGoogle Scholar
  26. Tang, J., Zhuang, L., Ma, J., Tang, Z., Yu, Z., and Zhou, S. 2016. Secondary mineralization of ferrihydrite affects microbial methanogenesis in Geobacter-Methanosarcina cocultures. Appl. Environ. Microbiol. 82, 5869–5877.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Viggi, C.C., Rossetti, S., Fazi, S., Paiano, P., Majone, M., and Aulenta, F. 2014. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ. Sci. Technol. 48, 7536–7543.CrossRefGoogle Scholar
  28. Yamada, C., Kato, S., Ueno, Y., Ishii, M., and Igarashi, Y. 2014. Inhibitory effects of ferrihydrite on a thermophilic methanogenic community. Microbes Environ. 29, 227–230.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Yang, Z.M., Shi, X.S., Wang, C.S., Wang, L., and Guo, R.B. 2015. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors. Sci. Rep. 5, 16118.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zhang, J., Dong, H.L., Liu, D., Fischer, T.B., Wang, S., and Huang, L.Q. 2012. Microbial reduction of Fe(III) in illite-smectite minerals by methanogen Methanosarcina mazei. Chem. Geol. 292, 35–44.CrossRefGoogle Scholar
  31. Zheng, S., Zhang, H., Li, Y., Zhang, H., Wang, O., Zhang, J., and Liu, F. 2015. Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron (III)-reducing enrichment culture. Front. Microbiol. 6, 941.PubMedPubMedCentralGoogle Scholar
  32. Zhou, S., Xu, J., Yang, G., and Zhuang, L. 2014. Methanogenesis affected by the co-occurrence of iron (III) oxides and humic substances. FEMS Microbiol. Ecol. 88, 107–120.CrossRefPubMedGoogle Scholar
  33. Zhuang, L., Xu, J.L., Tang, J., and Zhou, S.G. 2015. Effect of ferrihydrite biomineralization on methanogenesis in an anaerobic incubation from paddy soil. J. Geophys. Res. Biogeosci. 120, 876–886.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China
  3. 3.Binzhou Medical UniversityYantaiP. R. China

Personalised recommendations