Advertisement

Journal of Microbiology

, Volume 55, Issue 6, pp 483–487 | Cite as

Bedaquiline susceptibility test for totally drug-resistant tuberculosis Mycobacterium tuberculosis

  • Ji-Chan Jang
  • Yong-Gyun Jung
  • Jungil Choi
  • Hyunju Jung
  • Sungweon RyooEmail author
Microbial Pathogenesis and Host-Microbe Interaction

Abstract

This study aimed to provide information that bedaquilline is significantly effective for treatment of totally drug resistant (TDR) Mycobacterium tuberculosis that shows resistant to all first- and second-line drugs-using an innovative disc agarose channel (DAC) system. Time-lapse images of single bacterial cells under culture conditions with different concentrations of bedaquiline were analysed by image processing software to determine minimum inhibitory concentrations (MICs). Bedaquiline inhibited the growth of TDR M. tuberculosis strains, with MIC values ranging from 0.125 to 0.5 mg/L. The results of the present study demonstrate that bedaquiline, newly approved by the United States Food and Drug Administration (FDA), may offer therapeutic solutions for TDR-TB.

Keywords

bedaquiline Mycobacterium tuberculosis totally drug resistant Mycobacterium tuberculosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H.W., Neefs, J.M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., et al. 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227.CrossRefPubMedGoogle Scholar
  2. Cambau, E. and Drancourt, M. 2014. Steps towards the discovery of Mycobacterium tuberculosis by Robert Koch, 1882. Clin. Microbiol. Infect. 20, 196–201.CrossRefPubMedGoogle Scholar
  3. Chien, J.Y., Lai, C.C., Tan, C.K., Chien, S.T., Yu, C.J., and Hsueh, P.R. 2013. Decline in rates of acquired multidrug-resistant tuberculosis after implementation of the directly observed therapy, short course (DOTS) and DOTS-Plus programmes in Taiwan. J. Antimicrob. Chemother. 68, 1910–1916.CrossRefPubMedGoogle Scholar
  4. Choi, J., Yoo, J., Kim, K.J., Kim, E.G., Park, K.O., Kim, H., Kim, H., Jung, H., Kim, T., Choi, M., et al. 2016. Rapid drug susceptibility test of Mycobacterium tuberculosis using microscopic timelapse imaging in an agarose matrix. Appl. Microbiol. Biotechnol. 100, 2355–2365.CrossRefPubMedGoogle Scholar
  5. Choi, J., Yoo, J., Lee, M., Kim, E.G., Lee, J.S., Lee, S., Joo, S., Song, S.H., Kim, E.C., Lee, J.C., et al. 2014. A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci. Transl. Med. 6, 267ra174.CrossRefPubMedGoogle Scholar
  6. Daley, C.L. and Caminero, J.A. 2013. Management of multidrug resistant tuberculosis. Semin. Respir. Crit. Care. Med. 34, 44–59.CrossRefPubMedGoogle Scholar
  7. Diacon, A.H., Pym, A., Grobusch, M., Patientia, R., Rustomjee, R., Page-Shipp, L., Pistorius, C., Krause, R., Bogoshi, M., Churchyard, G., et al. 2009. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med. 360, 2397–2405.CrossRefPubMedGoogle Scholar
  8. Gupta, S., Cohen, K.A., Winglee, K., Maiga, M., Diarra, B., and Bishai, W.R. 2014. Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 58, 574–576.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Keller, P.M., Hömke, R., Ritter, C., Valsesia, G., Bloemberg, G.V., and Böttger, E.C. 2015. Determination of MIC distribution and epidemiological cut-off values for bedaquiline and delamanid in Mycobacterium tuberculosis using MGIT 960/TB eXiST. Antimicrob. Agents Chemother. 59, 1–14.CrossRefGoogle Scholar
  10. Koul, A., Dendouga, N., Vergauwen, K., Molenberghs, B., Vranckx, L., Willebrords, R., Ristic, Z., Lill, H., Dorange, I., Guillemont, J., et al. 2007. Diarylquinolines target subunit c of mycobacterial ATP Synthase. Nat. Chem. Biol. 3, 323–324.CrossRefPubMedGoogle Scholar
  11. Mahajan, R. 2013. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int. J. Appl. Basic. Med. Res. 3, 1–2.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Martin, A., Camacho, M., Portaels, F., and Palomino, J.C. 2003. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple, and inexpensive method. Antimicrob. Agents Chemother. 47, 3616–3619.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Matsumoto, M., Hashizume, H., Tomishige, T., Kawasaki, M., Tsubouchi, H., Sasaki, H., Shimokawa, Y., and Komatsu, M. 2006. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 3, 2131–2144.CrossRefGoogle Scholar
  14. Migliori, G.B., Centis, R., D’Ambrosio, L., Spanevello, A., Borroni, E., Cirillo, D.M., Sotqiu, G. 2012. Totally drug-resistant and extremely drug-resistant tuberculosis: the same disease? Clin. Infect. Dis. 54, 1379–1380.CrossRefPubMedGoogle Scholar
  15. Padhi, A., Sengupta, M., Sengupta, S., Roehm, K.H., and Sonawane, A. 2014. Antimicrobial peptides and proteins in mycobacterial therapy: Current status and future prospects. Tuberculosis 94, 363–373.CrossRefPubMedGoogle Scholar
  16. Parida, S.K., Axelsson-Robertson, R., Rao, M.V., Singh, N., Master, I., Lutckii, A., Keshavjee, S., Andersson, J., Zumla, A., and Maeurer M. 2015. Totally drug-resistant tuberculosis and adjunct therapies. J. Intern. Med. 277, 388–405.CrossRefPubMedGoogle Scholar
  17. Silva, P.E.A., Groll, A., Martin, A., and Palomino, J.C. 2011. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol. Med. Microbiol. 63, 1–9.CrossRefPubMedGoogle Scholar
  18. Taneja, N.K. and Tyagi, J.S. 2007. Resazurin reduction assays for screening of anti-tubercular compounds against dormant and actively growing Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis. J. Antimicrob. Chemother. 60, 288–293.CrossRefPubMedGoogle Scholar
  19. Torrea, G., Coeck, N., Desmaretz, C., Parre, T. Van De, Poucke, T. Van, Lounis, N., de Jong, B.C., and Rigouts, L. 2015. Bedaquiline susceptibility testing of Mycobacterium tuberculosis in an automated liquid culture system. J. Antimicrob. Chemother. 70, 2300–2305.CrossRefPubMedGoogle Scholar
  20. Udwadia, Z. and Vendoti, D. 2013. Totally drug-resistant tuberculosis (TDR-TB) in India: every dark cloud has a silver lining. J. Epidemiol. Community. Heal. 67, 471–472.CrossRefGoogle Scholar
  21. World Health Organization. 2012. Global tuberculosis report 2012. WHO. 258. http://www.who.int/tb/publications/global_report/gtbr12_main.pdf.Google Scholar
  22. World Health Organisation. 2014. WHO | Multidrug-resistant tuberculosis (MDR-TB). World. Heal. Organ. 1 http://www.who.int/tb/challenges/mdr/en/.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ji-Chan Jang
    • 1
    • 2
  • Yong-Gyun Jung
    • 3
    • 4
    • 5
  • Jungil Choi
    • 6
  • Hyunju Jung
    • 7
  • Sungweon Ryoo
    • 7
    • 8
    Email author
  1. 1.Molecular Mechanisms of Antibiotics, Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
  2. 2.Research Institute of Life SciencesGyeongsang National UniversityJinjuRepublic of Korea
  3. 3.Interdisciplinary Program of Biomodulation, College of Natural ScienceMyongji UniversityYonginRepublic of Korea
  4. 4.Myongji Bioefficiency Research CentreMyongji UniversityYonginRepublic of Korea
  5. 5.Center for Nutraceutical and Pharmaceutical MaterialsMyongji UniversityYonginRepublic of Korea
  6. 6.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  7. 7.Korean Institute of TuberculosisOsongRepublic of Korea
  8. 8.Korean National Tuberculosis AssociationSeoulRepublic of Korea

Personalised recommendations