Journal of Microbiology

, Volume 55, Issue 4, pp 247–252 | Cite as

Spirosoma luteolum sp. nov. isolated from water

  • Jae-Jin Lee
  • Su-Jin Park
  • Yeon-Hee Lee
  • Seung-Yeol Lee
  • Sangkyu Park
  • Young-Je Cho
  • Myung Kyum Kim
  • Leonid N. Ten
  • Hee-Young JungEmail author
Microbial Systematics and Evolutionary Microbiology


A novel Gram-negative and rod-shaped bacterial strain, designated as 16F6ET, was isolated from a water sample. Cells were yellowish in color and catalase- and oxidase-positive. The strain grew at 10–37°C (optimum at 25°C) but not at 4 and 42°C, and pH 5–7 (optimum at pH 7). It showed moderate resistance to gamma-ray irradiation. Comparative phylogenetic analysis showed that strain 16F6ET belonged to the family Cytophagaceae of the class Cytophagia. Furthermore, this isolate showed relatively low 16S rRNA gene sequence similarities (90.7–93.1%) to the members of the genus Spirosoma. The major fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c), C16:1 ω5c, C16:0 N alcohol, and C16:0. The polar lipid profile indicated presence of phosphatidylethanolamine, unknown aminophospholipids, an unknown amino lipid, unknown phospholipids, and unknown polar lipids. The predominant isoprenoid quinone was MK-7. The genomic DNA G+C content of strain 16F6ET was 56.5 mol%. Phenotypic, phylogenetic, and chemotaxonomic properties indicated that isolate 16F6ET represents a novel species within the genus Spirosoma, for which the name Spirosoma luteolum sp. nov. is proposed. The type strain is 16F6ET (=KCTC 52199T =JCM 31411T).


Spirosoma polyphasic taxonomy water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2017_6455_MOESM1_ESM.pdf (202 kb)
Supplementary material, approximately 202 KB.


  1. Ahn, J.H., Weon, H.Y., Kim, S.J., Hong, S.B., Seok, S.J., and Kwon, S.W. 2014. Spirosoma oryzae sp. nov., isolated from rice soil and emended description of the genus Spirosoma. Int. J. Syst. Evol. Microbiol. 64, 3230–3234.CrossRefPubMedGoogle Scholar
  2. Baik, K.S., Kim, M.S., Park, S.C., Lee, D.W., Lee, S.D., Ka, J.O., Choi, S.K., and Seong, C.N. 2007. Spirosoma rigui sp. nov., isolated from fresh water. Int. J. Syst. Evol. Microbiol. 64, 3230–3234.Google Scholar
  3. Brooks, B.W. and Murray, R.G.E. 1981. Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int. J. Syst. Bacteriol. 19, 353–360.CrossRefGoogle Scholar
  4. Buck, J.D. 1982. Non-staining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.PubMedPubMedCentralGoogle Scholar
  5. Chang, X., Jiang, F., Wang, T., Kan, W., Qu, Z., Ren, L., Fang, C., and Peng, F. 2014. Spirosoma arcticum sp. nov., isolated from high arctic glacial till. Int. J. Syst. Evol. Microbiol. 64, 3230–3234.CrossRefGoogle Scholar
  6. Finster, K.W., Herbert, R.A., and Lomstein, B.A. 2009, Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma. Int. J. Syst. Evol. Microbiol. 59, 839–844.CrossRefPubMedGoogle Scholar
  7. Frank, J.A., Reich, C.I., Sharma, S., Weisbaum, J.S., Wilson, B.A., and Olsen, G.J. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461–2470.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fries, J., Pfeiffer, S., Kuffner, M., and Sessitsch, A. 2013. Spirosoma endophyticum sp. nov., isolated from Zn-and Cd-accumulating Salix caprea. Int. J. Syst. Evol. Microbiol. 63, 4586–4590.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.CrossRefGoogle Scholar
  10. Im, W.T., Jung, H.M., Ten, L.N., Kim, M.K., Bora, N., Goodfellow, M., Lim, S., Jung, J., and Lee, S.T. 2008. Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 58, 2348–2353.CrossRefPubMedGoogle Scholar
  11. Kämpfer, P., Lodders, N., Huber, B., Falsen, E., and Busse, H.J. 2008. Deinococcus aquatilis sp. nov., isolated from water. Int. J. Syst. Evol. Microbiol. 58, 2803–2806.CrossRefPubMedGoogle Scholar
  12. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.CrossRefPubMedGoogle Scholar
  13. Kimura, M. 1981. Estimation of evolutionary distances between homologous nucleotide sequences. The neutral theory of molecular evolution. Proc. Natl. Acad. Sci. USA 78, 454–458.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Komagata, K. and Suzuki, K. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 1–207.Google Scholar
  15. Larkin, J.M. and Borrall, R. 1978. Spirosomaceae, a new family to contain the genera Spirosoma Migula 1894, Flectobacillus Larkin et al. 1977, and Runella Larkin and Williams 1978. Int. J. Syst. Bacteriol. 28, 595–596.CrossRefGoogle Scholar
  16. Larkin, J.M. and Borrall, R. 1984. Family I. Spirosomaceae Larkin and Borrall 1978, 595AL. Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 125–126. In Krieg, N.R. and Holt, J.G. (eds.). Williams and Wilkins Baltimore, USA.Google Scholar
  17. Lee, J.J., Srinivasan, S., Lim, S., Joe, M., Im, S., Bae, S.I., Park, K.R., Han, J.H., Park, S.H., Joo, B.M., et al. 2014. Spirosoma radiotolerans sp. nov., a gamma-radiation-resistant bacterium isolated from gamma ray-irradiated soil. Curr. Microbiol. 69, 286–291.CrossRefPubMedGoogle Scholar
  18. Lim, S., Song, D., Joe, M., and Kim, D. 2012. Development of a qualitative dose indicator for gamma radiation using lyophilized Deinococcus. J. Microbiol. Biotechnol. 22, 1296–1300.CrossRefPubMedGoogle Scholar
  19. Lim, S., Yoon, H., Ryu, S., Jung, J., Lee, M., and Kim, D. 2006. A comparative evaluation of radiation-induced DNA damage using real-time PCR: influence of base composition. Radiat. Res. 165, 430–437.CrossRefPubMedGoogle Scholar
  20. Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.CrossRefGoogle Scholar
  21. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  22. Saitou, N. and Nei, M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  23. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.Google Scholar
  24. Stackebrandt, E. and Goebel, B.M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.CrossRefGoogle Scholar
  25. Tamaoka, J. and Komagata, K. 1984. Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25, 125–128.CrossRefGoogle Scholar
  26. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ten, L.N., Xu, J.L., Jin, F.X., Im, W.T., Oh, H.M., and Lee, S.T. 2009. Spirosoma panaciterrae sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 59, 331–335.CrossRefPubMedGoogle Scholar
  28. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.CrossRefGoogle Scholar
  29. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., et al. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar
  30. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.CrossRefPubMedPubMedCentralGoogle Scholar
  31. White, O., Eisen, J.A., Heidelberg, J.F., Hickey, E.K., Peterson, J.D., Dodson, R.J., Haft, D.H., Gwinn, M.L., Nelson, W.C., Richardson, D.L., et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571–1577.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jae-Jin Lee
    • 1
  • Su-Jin Park
    • 1
  • Yeon-Hee Lee
    • 1
  • Seung-Yeol Lee
    • 1
  • Sangkyu Park
    • 1
  • Young-Je Cho
    • 2
  • Myung Kyum Kim
    • 3
  • Leonid N. Ten
    • 1
  • Hee-Young Jung
    • 1
    • 4
    Email author
  1. 1.School of Applied BiosciencesKyungpook National UniversityDaeguRepublic of Korea
  2. 2.School of Food Science and Biotechnology/Food and Bio-Industry Research InstituteKyungpook National UniversityDaeguRepublic of Korea
  3. 3.Department of Bio and Environmental TechnologySeoul Women’s UniversitySeoulRepublic of Korea
  4. 4.Institute of Plant MedicineKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations