Journal of Microbiology

, Volume 55, Issue 1, pp 1–12 | Cite as

The therapeutic applications of antimicrobial peptides (AMPs): a patent review

  • Hee-Kyoung Kang
  • Cheolmin Kim
  • Chang Ho Seo
  • Yoonkyung Park
Minireview

Abstract

Antimicrobial peptides (AMPs) are small molecules with a broad spectrum of antibiotic activities against bacteria, yeasts, fungi, and viruses and cytotoxic activity on cancer cells, in addition to anti-inflammatory and immunomodulatory activities. Therefore, AMPs have garnered interest as novel therapeutic agents. Because of the rapid increase in drug-resistant pathogenic microorganisms, AMPs from synthetic and natural sources have been developed using alternative antimicrobial strategies. This article presents a broad analysis of patents referring to the therapeutic applications of AMPs since 2009. The review focuses on the universal trends in the effective design, mechanism, and biological evolution of AMPs.

Keywords

antimicrobial peptide therapies drug candidate pathogenic bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta, J., Carpio, Y., Valdes, I., Velazquez, J., Zamora, Y., Morales, R., Morales, A., Rodrí guez, E., and Estrada, M.P. 2014. Co-administration of tilapia alpha-helical antimicrobial peptides with subunit antigens boost immunogenicity in mice and tilapia (Oreochromis niloticus). Vaccine 32, 223–229.CrossRefPubMedGoogle Scholar
  2. Acosta, J. and Estrada, M.P. 2013. Amino acid sequences for controlling pathogens. US20140294871 A1.Google Scholar
  3. Altman, S., Bothwell, A., Mamoum, C.B., and Pabst, P.L. 2013. Antimicrobial compositions and methods of use thereof. WO2013-044116 A1.Google Scholar
  4. Aoki, W. and Ueda, M. 2013. Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals (Basel) 6, 1055–1081.CrossRefGoogle Scholar
  5. Arribas, B., Garrido-Mesa, N., Peran, L., Camuesco, D., Comalada, M., Bailon, E., Olivares, M., Xaus, J., Kruidenier, L., Sanderson, I.R., et al. 2012. The immunomodulatory properties of viable Lactobacillus salivarius ssp. salivarius CECT5713 are not restricted to the large intestine. Eur. J. Nutr. 51, 365–374.CrossRefPubMedGoogle Scholar
  6. Baba, M.S., Zin, N.M., Hassan, Z.A., Latip, J., Pethick, F., Hunter, I.S., Edrada-Ebel, R., and Herron, P.R. 2015. In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10. J. Microbiol. 53, 847–855.CrossRefPubMedGoogle Scholar
  7. Brzoska, T., Luger, T.A., Maaser, C., Abels, C., and Bohm, M. 2008. a-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immunemediated inflammatory diseases. Endocr. Rev. 29, 581–602.CrossRefPubMedGoogle Scholar
  8. Cabiaux, V., Agerberth, B., Johansson, J., Homblé, F., Goormaghtigh, E., and Ruysschaert, J.M. 1994. Secondary structure and membrane interaction of PR-39, a Pro+Arg-rich antibacterial peptide. Eur. J. Biochem. 224, 1019–1027.CrossRefPubMedGoogle Scholar
  9. Casteels-Josson, K., Capaci, T., Casteels, P., and Tempst, P. 1993. Apidaecin multipeptide precursor structure: a putative mechanism for amplification of the insect antibacterial response. EMBO J. 12, 1569–1578.PubMedPubMedCentralGoogle Scholar
  10. Chen, H.L., Su, P.Y., Chang, Y.S., Wu, S.Y., Liao, Y.D., Yu, H.M., Lauderdale, T.L., Chang, K., and Shih, C. 2013. Identification of a novel antimicrobial peptide from human hepatitis B virus core protein arginine-rich domain (ARD). PLoS Pathog. 9, e1003425.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chiuchiolo, M.J., Delgado, M.A., Farias, R.N., and Salomon, R.A. 2001. Growth-phase-dependent expression of the cyclopeptide antibiotic microcin J25. J. Bacteriol. 183, 1755–1764.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Collins, J.J., Koeris, M., Lu, T.K.T., Chau, T.M., and Stephanopoulos, G. 2010. Bacteriophages expressing antimicrobial peptides and uses thereof. WO2010141135 A2.Google Scholar
  13. Conlon, J.M., Al-Ghaferi, N., Abraham, B., and Leprince, J. 2007. Strategies for transformation of naturally occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods 42, 349–357.CrossRefPubMedGoogle Scholar
  14. Cudic, M. and Otvos, L.Jr. 2002. Intracellular targets of antibacterial peptides. Curr. Drug Targets 3, 101–106.CrossRefPubMedGoogle Scholar
  15. Dipexium Pharmaceuticals. Available online: http://www.dipexiumpharmaceuticals. com (accessed on 8 August 2016).Google Scholar
  16. Dubos, R.J. 1939. Studies on a bactericidal agent extracted from a soil Bacillus: I. preparation of the agent. Its activity in vitro. J. Exp. Med. 70, 1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Duquesne, S., Destoumieux-Garzon, D., Peduzzi, J., and Rebuffat, S. 2007. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 24, 708–734.CrossRefPubMedGoogle Scholar
  18. Eckert, R.H., Yarbrough, D.K., Shi, W., Anderson, M.H., Qi, F., He, J., and Mchardy, I.H. 2008. Selectively targeted antimicrobial peptides and the use thereof. WO2008030988 A2.Google Scholar
  19. Epand, R.M. and Vogel, H.J. 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta 1462, 11–28.CrossRefPubMedGoogle Scholar
  20. Ge, Y., MacDonald, D.L., Holroyd, K.J., Thornsberry, C., Wexler, H., and Zasloff, M. 1999. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob. Agents Chemother. 43, 782–788.PubMedPubMedCentralGoogle Scholar
  21. Gidalevitz, D., Ishitsuka, Y., Muresan, A.S., Konovalov, O., Waring, A.J., Lehrer, R.I., and Lee, K.Y. 2003. Interaction of antimicrobial peptide protegrin with biomembranes. Proc. Natl. Acad. Sci. USA 100, 6302–6307.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gunzer, F., Zschuettig, A., and Zimmermann, K. 2013. Bacterially formed microcin s, a new antimicrobial peptide, effective against pathogenic microorganisms, e.g. enterohemorrhagic Escherichia coli (ehec). WO2013024066 A1.Google Scholar
  23. Hains, D., Schwaderer, A., and Wang, H. 2013. RNase 7 antimicrobial peptides. WO2013158773 A3.Google Scholar
  24. Haisma, E.M., de Breij, A., Chan, H., van Dissel, J.T., Drijfhout, J.W., Hiemstra, P.S., El Ghalbzouri, A., and Nibbering, P.H. 2014. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrob. Agents Chemother. 58, 4411–4419.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hancock, R.E. and Chapple, D.S. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43, 1317–1323.PubMedPubMedCentralGoogle Scholar
  26. Hilpert, K., Mikut, R., and Ruden, S. 2013. Antimicrobial peptides for treatment of infectious diseases. WO2013053772 A1.Google Scholar
  27. Hoffmann, R., Berthold, N., and Nollmann, F. 2014. Modified antibiotic peptides having variable systemic release. US20140309161 A1.Google Scholar
  28. Hoffmann, R. and Czihal, P. 2009. Antibiotic peptides. WO2009-013262 A1.Google Scholar
  29. Jang, S.A., Kim, D.J., Kim, S.C., Lee, Y.W., Lim, K.J., Shin, J.R., and Sung, B.H. 2012. Novel use of antimicrobial peptides in regeneration of skin cells. WO2012046922 A1.Google Scholar
  30. Jenssen, H., Hamill, P., and Hancock, R.E. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jiang, Z., Hodges, R., Gera, L., and Mant, C. 2015. Dermaseptin-type and piscidin-type antimicrobial peptides. WO2015112980 A2.Google Scholar
  32. Jones, A.T. 2007. Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. J. Cell Mol. Med. 11, 670–684.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kim, H., Kim, H.R., Kim, N.R., Jeong, B.J., Lee, J.S., Jang. S., and Chung, D.K. 2015. Oral administration of Lactobacillus plantarum lysates attenuates the development of atopic dermatitis lesions in mouse models. J. Microbiol. 53, 47–52.CrossRefPubMedGoogle Scholar
  34. Ladram, A., Oury, B., Sereno, D., and Foulon, T. 2013. Analogues of temporin-SHa and uses thereof. EP 2853538 A1.Google Scholar
  35. Lee, C.C., Sun, Y., Qian, S., and Huang, H.W. 2011. Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys. J. 100, 1688–1696.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lehrer, R.I., Cole, A.M., and Selsted, M.E. 2012. α-Defensins: cyclic peptides with endless potential. J. Biol. Chem. 287, 27014–27019.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lehrer, R.I., Waring, A.J., Cole, A.M., and Hong, T.B. 2010. Retrocyclins: antiviral and antimicrobial peptides. US7718610 B2.Google Scholar
  38. Li, W.F., Ma, G.X., and Zhou, X.X. 2006. Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides 27, 2350–2359.CrossRefPubMedGoogle Scholar
  39. Luger, T.A. and Brzoska, T. 2007. α-MSH related peptides: a new class of anti-inflammatory and immunomodulating drugs. Ann. Rheum. Dis. 66, iii52–iii55.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Maccari, G., Nifosi, R., and Di Luca, M. 2013. Rational development of antimicrobial peptides for therapeutic use: design and production of highly active compounds. In Medez-Vilas, A. (ed.), Microbial pathogens and strategies for combating them: science, technology and education, pp. 1265–1277.Google Scholar
  41. Formatex Research Center, Badajoz, Spain. Madam Therapeutics. Available online: http://www.madam-therapeutics. com (accessed on 30 August 2016).Google Scholar
  42. Madani, F., Lindberg, S., Langel, U., Futaki, S., and Gräslund, A. 2011. Mechanisms of cellular uptake of cell-penetrating peptides. J. Biophys. 2011, 414729.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Martin, R., Jimenez, E., Olivares, M., Marin, M.L., Fernandez, L., Xaus, J., and Rodríguez, J.M. 2006. Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. Int. J. Food Microbiol. 112, 35–43.CrossRefPubMedGoogle Scholar
  44. Mayor, S. and Pagano, R.E. 2007. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8, 603–612.CrossRefPubMedGoogle Scholar
  45. Messaoudi, S., Manai, M., Kergourlay, G., Prévost, H., Connil, N., Chobert, J.M., and Dousset, X. 2013. Lactobacillus salivarius: bacteriocin and probiotic activity. Food Microbiol. 36, 296–304.CrossRefPubMedGoogle Scholar
  46. Münk, C., Wei, G., Yang, O.O., Waring, A.J., Wang, W., Hong, T., Lehrer, R.I., Landau, N.R., and Cole, A.M. 2003. The theta-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Res. Hum. Retroviruses 19, 875–881.CrossRefPubMedGoogle Scholar
  47. Nibbering, P.H., Hiemstra, P., and Drijfhout, J.W. 2016. Antimicrobial peptide. US20160075749 A1.Google Scholar
  48. Nicolas, P. 2009. Multifunctional host defense peptides: intracellulartargeting antimicrobial peptides. FEBS J. 276, 6483–6496.CrossRefPubMedGoogle Scholar
  49. Park, S.C., Kim, M.H., Hossain, M.A., Shin, S.Y., Kim, Y., Stella, L., Wade, J.D., Park, Y., and Hahm, K.S. 2008. Amphipathic a-helical peptide, HP(2–20), and its analogues derived from Helicobacter pylori: pore formation mechanism in various lipid compositions. Biochim. Biophys. Acta 1778, 229–241.CrossRefPubMedGoogle Scholar
  50. Patil, S.D., Sharma, R., Bhattacharyya, T., Kumar, P., Gupta, M., Chaddha, B.S., Navani, N.K., and Pathania, R. 2015. Antibacterial potential of a small peptide from Bacillus sp. RPT-0001 and its capping for green synthesis of silver nanoparticles. J. Microbiol. 53, 643–652.CrossRefPubMedGoogle Scholar
  51. Phoenix, D.A., Dennison, S.R., and Harris, F. 2013. Antimicrobial peptides: their history, evolution, and functional promiscuity, pp. 1–37. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.CrossRefGoogle Scholar
  52. Rinaldi, A.C. 2002. Antimicrobial peptides from amphibian skin: an expanding scenario. Curr. Opin. Chem. Biol. 6, 799–804.CrossRefPubMedGoogle Scholar
  53. Rollins-Smith, L.A., Reinert, L.K., O'Leary, C.J., Houston, L.E., and Woodhams, D.C. 2005. Antimicrobial peptide defenses in amphibian skin. Integr. Comp. Biol. 45, 137–142.CrossRefPubMedGoogle Scholar
  54. Ross, P., O'SHEA, E., and Hill, C. 2013. Anitmicrobial peptide produced by intestinal Lactobacillus salivarius. WO2013014293 A1.Google Scholar
  55. Scott, M.G., Davidson, D.J., Gold, M.R., Bowdish, D., and Hancock, R.E. 2002. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol. 169, 3883–3891.CrossRefPubMedGoogle Scholar
  56. Shih, C., Chen, H.L., and Su, P.Y. 2014. Antimicrobial peptides derived from hepatitis b virus core protein arginine-rich domain. WO2014124047 A1.Google Scholar
  57. Sokolov, Y., Mirzabekov, T., Martin, D.W., Lehrer, R.I., and Kagan, B.L. 1999. Membrane channel formation by antimicrobial protegrins. Biochim. Biophys. Acta 1420, 23–29.CrossRefPubMedGoogle Scholar
  58. Song, P.I., Armstrong, C., Ryu, S., Park, Y., and Hahm, K.S. 2014. Methods of use for an antimicrobial peptide. WO2014152437 A2.Google Scholar
  59. Song, S., Jin, L., Liu, J., and Wang, Q. 2012. Antimicrobial peptide separated from skin of Northeast China brown frog and applications in antibacterials. CN101333247 B.Google Scholar
  60. Song, Y., Li, T., Yu, X., and Meng, Q. 2011. Rana nigromaculata antimicrobial peptide as well as gene and application thereof. CN102250216 A.Google Scholar
  61. Spencer, J.D., Schwaderer, A.L., Dirosario, J.D., McHugh, K.M., McGillivary, G., Justice, S.S., Carpenter, A.R., Baker, P.B., Harder, J., and Hains, D.S. 2011. Ribonuclease 7 is a potent antimicrobial peptide within the human urinary tract. Kidney Int. 80, 174–180.CrossRefPubMedGoogle Scholar
  62. Ståhle-Bäckdahl, M., Heilborn, J., Carlsson, A., and Bogentoft, C. 2011. Use of the cathelicidin LL-37 and derivatives therof for wound healing. US8012933 B2.Google Scholar
  63. Stange, E., Schroeder, B., and Wehkamp, J. 2015. Antimicrobial peptides. WO2013132005 A1.Google Scholar
  64. Steinberg, D.A., Hurst, M.A., Fujii, C.A., Kung, A.H., Ho, J.F., Cheng, F.C., Loury, D.J., and Fiddes, J.C. 1997. Protegrin-1: a broadspectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob. Agents Chemother. 41, 1738–1742.PubMedPubMedCentralGoogle Scholar
  65. Steiner, H., Hultmark, D., Engström, A., Bennich, H., and Boman, H.G. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246–248.CrossRefPubMedGoogle Scholar
  66. STRØM, M., Hansen, T., Havelkova, M., and TØRFOSS, V. 2011. Therapeutic peptides. WO2011051692 A1.Google Scholar
  67. Toke, O. 2005. Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers 80, 717–735.CrossRefPubMedGoogle Scholar
  68. Turner, J., Cho, Y., Dinh, N.N., Waring, A.J., and Lehrer, R.I. 1998. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob. Agents Chemother. 42, 2206–2014.PubMedPubMedCentralGoogle Scholar
  69. Wang, Y., Moskowitz, H., Liu, X., Roczniak, S.O., and Bossard, M.J. 2011. Polymer conjugates of protegrin peptides. US20110171161 A1.Google Scholar
  70. Wang, H., Schwaderer, A.L., Kline, J., Spencer, J.D., Kline, D., and Hains, D.S. 2013. Contribution of structural domains to the activity of ribonuclease 7 against uropathogenic bacteria. Antimicrob. Agents Chemother. 57, 766–774.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Willcox, M.D.P., Kumar, N., Cole, N., and Chen, R. 2013. Antimicrobial peptides and uses thereof. WO2013076666 A1.Google Scholar
  72. Yang, D., Biragyn, A., Kwak, L.W., and Oppenheim, J.J. 2002. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 23, 291–266.CrossRefPubMedGoogle Scholar
  73. Yasin, B., Wang, W., Pang, M., Cheshenko, N., Hong, T., Waring, A.J., Herold, B.C., Wagar, E.A., and Lehrer, R.I. 2004. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol. 78, 5147–5156.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yeaman, M.R. and Yount, N.Y. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27–55.CrossRefPubMedGoogle Scholar
  75. Yount, N.Y. and Yeaman, M.R. 2012. Emerging themes and therapeutic prospects for anti-infective peptides. Annu. Rev. Pharmacol. Toxicol. 52, 337–360.CrossRefPubMedGoogle Scholar
  76. Zaiou, M. 2007. Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J. Mol. Med. (Berl) 85, 317–329.CrossRefGoogle Scholar
  77. Zasloff, M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 84, 5449–5453.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zasloff, M., Martin, B., and Chen, H.C. 1988. Antimicrobial activity of synthetic magainin peptides and several analogues. Proc. Natl. Acad. Sci. USA 85, 910–913.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhang, L. and Carmichael, R. 2013. Short antimicrobial lipopeptides. WO2013142088 A1.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hee-Kyoung Kang
    • 1
  • Cheolmin Kim
    • 2
  • Chang Ho Seo
    • 2
  • Yoonkyung Park
    • 1
    • 3
  1. 1.Department of Biomedical SciencesChosun UniversityGwangjuRepublic of Korea
  2. 2.Department of BioinformaticsKongju National UniversityKongjuRepublic of Korea
  3. 3.Research Center for Proteinaceous MaterialsChosun UniversityGwangjuRepublic of Korea

Personalised recommendations