Journal of Microbiology

, Volume 54, Issue 12, pp 838–845 | Cite as

Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea

  • Jeong Myeong Kim
  • An-Sung Roh
  • Seung-Chul Choi
  • Eun-Jeong Kim
  • Moon-Tae Choi
  • Byung-Koo Ahn
  • Sun-Kuk Kim
  • Young-Han Lee
  • Jae-Ho Joa
  • Seong-Soo Kang
  • Shin Ae Lee
  • Jae-Hyung Ahn
  • Jaekyeong Song
  • Hang-Yeon WeonEmail author
Microbial Ecology and Environmental Microbiology


Soil microorganisms play an essential role in soil ecosystem processes such as organic matter decomposition, nutrient cycling, and plant nutrient availability. The land use for greenhouse cultivation has been increasing continuously, which involves an intensive input of agricultural materials to enhance productivity; however, relatively little is known about bacterial communities in greenhouse soils. To assess the effects of environmental factors on the soil bacterial diversity and community composition, a total of 187 greenhouse soil samples collected across Korea were subjected to bacterial 16S rRNA gene pyrosequencing analysis. A total of 11,865 operational taxonomic units at a 97% similarity cutoff level were detected from 847,560 sequences. Among nine soil factors evaluated; pH, electrical conductivity (EC), exchangeable cations (Ca2+, Mg2+, Na+, and K+), available P2O5, organic matter, and NO3-N, soil pH was most strongly correlated with bacterial richness (polynomial regression, pH: R2 = 0.1683, P < 0.001) and diversity (pH: R2 = 0.1765, P < 0.001). Community dissimilarities (Bray-Curtis distance) were positively correlated with Euclidean distance for pH and EC (Mantel test, pH: r = 0.2672, P < 0.001; EC: r = 0.1473, P < 0.001). Among dominant phyla (> 1%), the relative abundances of Proteobacteria, Gemmatimonadetes, Acidobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes were also more strongly correlated with pH and EC values, compared with other soil cation contents, such as Ca2+, Mg2+, Na+, and K+. Our results suggest that, despite the heterogeneity of various environmental variables, the bacterial communities of the intensively cultivated greenhouse soils were particularly influenced by soil pH and EC. These findings therefore shed light on the soil microbial ecology of greenhouse cultivation, which should be helpful for devising effective management strategies to enhance soil microbial diversity and improving crop productivity.


greenhouse soil bacterial community pH electrical conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2016_6526_MOESM1_ESM.pdf (366 kb)
Supplementary material, approximately 365 KB.


  1. Ahn, J.H., Hong, I.P., Bok, J.I., Kim, B.Y., Song, J., and Weon, H.Y. 2012. Pyrosequencing analysis of the bacteria communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J. Microbiol. 50, 735–745.CrossRefPubMedGoogle Scholar
  2. Baldrian, P., Kolarík, M., Stursová, M., Kopecký, J., Valášková, V., Vetrovský, T., Zifcáková, L., Snajdr, J., Ridl, J., Vlcek, C., et al. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6, 248–258.CrossRefPubMedGoogle Scholar
  3. Bartram, A.K., Jiang, X., Lynch, M.D., Masella, A.P., Nicol, G.W., Dushoff, J., and Neufeld, J.D. 2014. Exploring links between pH and bacterial community composition in soils from the Craibstone experimental farm. FEMS Microbiol. Ecol. 87, 403–415.CrossRefPubMedGoogle Scholar
  4. Bending, D.G., Putland, C., and Rayns, F. 2000. Changes in microbial community metabolism and labile organic matter fractions as early indicators of the impact of management on soil biological quality. Biol. Fertil. Soils 31, 78–84.CrossRefGoogle Scholar
  5. Buckley, D.H. and Schmidt, T.M. 2003. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 5, 441–452.CrossRefPubMedGoogle Scholar
  6. Canfora, L., Bacci, G., Pinzari, F., Lo Papa, G., and Dazzi, C. 2014. Salinity and bacterial diversity: To what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS One 9, e106662.Google Scholar
  7. Casamayor, E.O., Massana, R., Benlloch, S., Øvreås, L., Díez, B., Goddard, V.J., Gasol, J.M., Joint, I., Rodríguez-Valera, F., and Pedrós-Alió, C. 2002. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4, 338–348.CrossRefPubMedGoogle Scholar
  8. Chu, H., Fierer, N., Lauber, C.L., Caporaso, J.G., Knight, R., and Grogan, P. 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12, 2998–3006.CrossRefPubMedGoogle Scholar
  9. Dixon, P. 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930.CrossRefGoogle Scholar
  10. Drenovsky, R.E., Steenwerth, K.L., Jackson, L.E., and Scow, K.M. 2010. Land use and climatic factors structure regional patterns in soil microbial communities. Glob. Ecol. Biogeogr. 19, 27–39.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998.CrossRefPubMedGoogle Scholar
  12. Fierer, N., Bradford, M.A., and Jackson, R.B. 2007. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364.CrossRefPubMedGoogle Scholar
  13. Fierer, N. and Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Girvan, M.S., Bullimore, J., Pretty, J.N., Osborn, A.M., and Ball, A.S. 2003. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 69, 1800–1809.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Girvan, M.S., Campbell, C.D., Killham, K., Prosser, J.I., and Glover, L.A. 2005. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7, 301–313.CrossRefPubMedGoogle Scholar
  16. Griffiths, R.I., Thomson, B.C., James, P., Bell, T., Bailey, M., and Whiteley, A.S. 2011. The bacterial biogeography of British soils. Environ. Microbiol. 13, 1642–1654.CrossRefPubMedGoogle Scholar
  17. Guo, J.H., Liu, X.J., Zhang, Y., Shen, J.L., Han, W.X., Zhang, W.F., Christie, P., Goulding, K.W., Vitousek, P.M., and Zhang, F.S. 2010. Significant acidification in major Chinese croplands. Science 327, 1008–1010.CrossRefPubMedGoogle Scholar
  18. Hardie, M. and Doyle, R. 2012. Measuring soil salinity. Methods Mol. Biol. 913, 415–425.PubMedGoogle Scholar
  19. Hartmann, M., Frey, B., Mayer, J., Mader, P., and Widmer, F. 2015. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194.CrossRefPubMedGoogle Scholar
  20. Henriques, I.S., Alves, A., Tacao, M., Almeida, A., Cunha, A., and Correia, A. 2006. Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuar. Coast. Shelf Sci. 68, 139–148.CrossRefGoogle Scholar
  21. Joa, J.H., Weon, H.Y., Hyun, H.N., Jeun, Y.C., and Koh, S.W. 2014. Effect of long-term different fertilization on bacterial community structures and diversity in citrus orchard soil of volcanic ash. J. Microbiol. 52, 995–1001.CrossRefPubMedGoogle Scholar
  22. Kang, S.S., Roh, A.S., Choi, S.C., Kim, Y.S., Kim, H.J., Choi, M.T., Ahn, B.G., Kim, H.K., Park, S.J., Lee, Y.H., et al. 2013. Status and change in chemical properties of polytunnel soil in Korea from 2000 to 2012. Korean J. Soil Sci. Fert. 46, 641–646.CrossRefGoogle Scholar
  23. Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., and Webb, C.O. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464.CrossRefPubMedGoogle Scholar
  24. Kennedy, A.C. 1999. Bacterial diversity in agroecosystems. Agric. Ecosyst. Environ. 74, 65–76.CrossRefGoogle Scholar
  25. Kim, M., Cho, A., Lim, H.S., Hong, S.G., Kim, J.H., Lee, J., Choi, T., Ahn, T.S., and Kim, O.S. 2015. Highly heterogeneous soil bacterial communities around Terra Nova Bay of northern Victoria Land, Antarctica. PLoS One 10, e0119966.Google Scholar
  26. Lauber, C.L., Hamady, M., Knight, R., and Fierer, N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lauber, C.L., Strickland, M.S., Bradford, M.A., and Fierer, N. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40, 2407–2415.CrossRefGoogle Scholar
  28. Liu, J., Sui, Y., Yu, Z., Shi, Y., Chu, H., Jin, J., Liu, X., and Wang, G. 2014. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 70, 113–122.CrossRefGoogle Scholar
  29. Lozupone, C.A. and Knight, R. 2007. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 104, 11436–11440.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ma, J.C., Ibekwe, A.M., Yang, C.H., and Crowley, D.E. 2016. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations. Sci. Total Environ. 563, 199–209.CrossRefPubMedGoogle Scholar
  31. Min, W., Guo, H., Zhang, W., Zhou, G., Ma, L., Ye, J., Liang, Y., and Hou, Z. 2016. Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil. Acta Agric. Scand. Sect. B 66, 117–126.Google Scholar
  32. Nacke, H., Thürmer, A., Wollherr, A., Will, C., Hodac, L., Herold, N., Schöning, I., Schrumpf, M., and Daniel, R. 2011. Pyrosequencingbased assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6, e17000.CrossRefGoogle Scholar
  33. Nemergut, D.R., Costello, E.K., Hamady, M., Lozupone, C., Jiang, L., Schmidt, S.K., Fierer, N., Townsend, A.R., Cleveland, C.C., Stanish, L., et al. 2011. Global patterns in the biogeography of bacterial taxa. Environ. Microbiol. 13, 135–144.CrossRefPubMedGoogle Scholar
  34. NIAST. 2000. Methods of analysis of soil and plant. NIAST (National Institute of Agricultural Science and Technology), Suwon, Korea (in Korean).Google Scholar
  35. Nielsen, M.N. and Winding, A. 2002. Microorganisms as indicators of soil health. National Environmental Research Institute, Technical Report no. 388. National Environmental Research Institute, Denmark. ( 3_fagrapporter/rapporter/FR388.pdf).Google Scholar
  36. Pereira, L.B., Vicentini, R., and Ottoboni, L.M.M. 2014. Changes in the bacterial community of soil from a neutral mine drainage channel. PLoS One 9, e96605.CrossRefGoogle Scholar
  37. Reich, P.B., Oleksyn, J., Modrzynski, J., Mrozinski, P., Hobbie, S.E., Eissenstat, D.M., Chorover, J., Chadwick, O.A., Hale, C.M., and Tjoelker, M.G. 2005. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol. Lett. 8, 811–818.CrossRefGoogle Scholar
  38. Reis, R.A., Fontes, P.C.R., Neves, J.C.L., and Santos, N.T. 1999. Total soil electrical conductivity and critical soil K+ to Ca2+ and Mg2+ ratio for potato crops. Sci. Agric. 56, 993–997.CrossRefGoogle Scholar
  39. Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., and Fierer, N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351.CrossRefPubMedGoogle Scholar
  40. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platform- independent, community-supported software for describing, and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Seo, H.D., Kang, S.H., Kim, K.Y., Kim, H.T., and Kang, S.J. 2013. White revolution of agriculture in Korea: The achievement of year-round production and distribution of horticultural crops by the expansion of greenhouse cultivation. KDI School of Public Policy and Management, Seoul.Google Scholar
  42. Shen, C., Xiong, J., Zhang, H., Feng, Y., Lin, X., Li, X., Liang, W., and Chu, H. 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211.CrossRefGoogle Scholar
  43. Shi, D.C. and Wang, D.L. 2005. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant Soil 271, 15–26.CrossRefGoogle Scholar
  44. Shi, W.M., Yao, J., and Yan, F. 2009. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in South-Eastern China. Nutr. Cycl. Agroecosys. 83, 73–84.CrossRefGoogle Scholar
  45. Singh, D., Shi, L., and Adams, J.M. 2013. Bacterial diversity in the mountains of south-west China: climate dominates over soil parameters. J. Microbiol. 51, 439–447.CrossRefPubMedGoogle Scholar
  46. Smith, P., House, J.I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P.C., Clark, J.M., Adhya, T., Rumpel, C., et al. 2016. Global change pressures on soils from land use and management. Glob. Chang. Biol. 22, 1008–1028.CrossRefPubMedGoogle Scholar
  47. Sridevi, G., Minocha, R., Turlapati, S.A., Goldfarb, K.C., Brodie, E.L., Tisa, L.S., and Minocha, S.C. 2012. Soil bacterial communities of a calcium-supplemented and a reference watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. FEMS Microbiol. Ecol. 79, 728–740.CrossRefPubMedGoogle Scholar
  48. Steenwerth, K.L., Jackson, L.E., Calderón, F.J., Stromberg, M.R., and Scow, K.M. 2002. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol. Biochem. 34, 1599–1611.CrossRefGoogle Scholar
  49. Sun, L., Gao, J., Huang, T., Kendall, J.R.A., Shen, Q., and Zhang, R. 2015. Parental material and cultivation determine soil bacterial community structure and fertility. FEMS Microbiol. Ecol. 91, 1–10.CrossRefPubMedGoogle Scholar
  50. Tripathi, B.M., Kim, M., Singh, D., Lee-Cruz, L., Lai-Hoe, A., Ainuddin, A.N., Go, R., Rahim, R.A., Husni, M.H., Chun, J., et al. 2012. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb. Ecol. 64, 474–484.CrossRefPubMedGoogle Scholar
  51. Tripathi, B., Lee-Cruz, L., Kim, M., Singh, D., Go, R., Shukor, N.A., Husni, M.H., Chun, J., and Adams, J. 2014. Spatial scaling effects on soil bacterial communities in Malaysian tropical forests. Microb. Ecol. 68, 247–258.CrossRefPubMedGoogle Scholar
  52. van der Heijden, M.G.A. and Wagg, C. 2013. Soil microbial diversity and agro-ecosystem functioning. Plant Soil 363, 1–5.CrossRefGoogle Scholar
  53. van Diepeningen, A.D., de Vos, O.J., Korthals, G.W., and van Bruggen, A.H.C. 2006. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Appl. Soil Ecol. 31, 120–135.CrossRefGoogle Scholar
  54. Wu, Q.L., Zwart, G., Schauer, M., Kamst-van Agterveld, M.P., and Hahn, M.W. 2006. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl. Environ. Microbiol. 72, 5478–5485.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Xu, H.J., Li, S., Su, J.Q., Nie, S.A., Gibson, V., Li, H., and Zhu, Y.G. 2014. Does urbanization shape bacterial community composition in urban park soils? a case study in 16 representative Chinese cities based on the pyrosequencing method. FEMS Microbiol. Ecol. 87, 182–192.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jeong Myeong Kim
    • 1
  • An-Sung Roh
    • 2
  • Seung-Chul Choi
    • 3
  • Eun-Jeong Kim
    • 4
  • Moon-Tae Choi
    • 5
  • Byung-Koo Ahn
    • 6
  • Sun-Kuk Kim
    • 7
  • Young-Han Lee
    • 8
  • Jae-Ho Joa
    • 9
  • Seong-Soo Kang
    • 10
  • Shin Ae Lee
    • 1
  • Jae-Hyung Ahn
    • 1
  • Jaekyeong Song
    • 1
  • Hang-Yeon Weon
    • 1
    Email author
  1. 1.National Institutes of Agricultural Sciences (NIAS)Rural Development Administration (RDA)WanjuRepublic of Korea
  2. 2.Gyeonggi-do Agricultural Research and Extension Service (ARES)HwaseongRepublic of Korea
  3. 3.Gangwon-do ARESChuncheonRepublic of Korea
  4. 4.Chungcheongbuk-do ARESCheongjuRepublic of Korea
  5. 5.Chungcheongnam-do ARESYesanRepublic of Korea
  6. 6.Jeollabuk-do ARESIksanRepublic of Korea
  7. 7.Jeollanam-do ARESNajuRepublic of Korea
  8. 8.Gyeongsangnam-do ARESJinjuRepublic of Korea
  9. 9.Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal ScienceRDAJejuRepublic of Korea
  10. 10.Soil & Fertilization Division, NIASRDAWanjuRepublic of Korea

Personalised recommendations