Journal of Microbiology

, Volume 54, Issue 12, pp 853–866 | Cite as

Inhibitory effects of bee venom and its components against viruses in vitro and in vivo

  • Md Bashir Uddin
  • Byeong-Hoon Lee
  • Chamilani Nikapitiya
  • Jae-Hoon Kim
  • Tae-Hwan Kim
  • Hyun-Cheol Lee
  • Choul Goo Kim
  • Jong-Soo Lee
  • Chul-Joong Kim
Virology

Abstract

Bee venom (BV) from honey bee (Apis Melifera L.) contains at least 18 pharmacologically active components including melittin (MLT), phospholipase A2 (PLA2), and apamin etc. BV is safe for human treatments dose dependently and proven to possess different healing properties including antibacterial and antiparasitidal properties. Nevertheless, antiviral properties of BV have not well investigated. Hence, we identified the potential antiviral properties of BV and its component against a broad panel of viruses. Co-incubation of non-cytotoxic amounts of BV and MLT, the main component of BV, significantly inhibited the replication of enveloped viruses such as Influenza A virus (PR8), Vesicular Stomatitis Virus (VSV), Respiratory Syncytial Virus (RSV), and Herpes Simplex Virus (HSV). Additionally, BV and MLT also inhibited the replication of non-enveloped viruses such as Enterovirus-71 (EV-71) and Coxsackie Virus (H3). Such antiviral properties were mainly explained by virucidal mechanism. Moreover, MLT protected mice which were challenged with lethal doses of pathogenic influenza A H1N1 viruses. Therefore, these results provides the evidence that BV and MLT could be a potential source as a promising antiviral agent, especially to develop as a broad spectrum antiviral agent.

Keywords

anti-viral activity bee venom melittin virucidal effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arts, I.C. and Hollman, P.C. 2005. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81, 317S–325S.PubMedGoogle Scholar
  2. Baghian, A., Jaynes, J., Enright, F., and Kousoulas, K.G. 1997. An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides 18, 177–183.CrossRefPubMedGoogle Scholar
  3. Baghian, A. and Kousoulas, K.G. 1993. Role of the Na+, K+ pump in herpes simplex type 1-induced cell fusion: melittin causes specific reversion of syncytial mutants with the syn1 mutation to Syn+ (wild-type) phenotype. Virology 196, 548–556.CrossRefPubMedGoogle Scholar
  4. Billingham, M.E., Morley, J., Hanson, J.M., Shipolini, R.A., and Vernon, C.A. 1973. Letter: an anti-inflammatory peptide from bee venom. Nature 245, 163–164.CrossRefPubMedGoogle Scholar
  5. Bouvier, N.M. and Lowen, A.C. 2010. Animal models for influenza virus pathogenesis and transmission. Viruses 2, 1530–1563.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., and Doerr, H.W. 2003. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361, 2045–2046.CrossRefPubMedGoogle Scholar
  7. Clague, M.J. and Cherry, R.J. 1988. Comparison of p25 presequence peptide and melittin. Red blood cell haemolysis and band 3 aggregation. Biochem. J. 252, 791–794.PubMedGoogle Scholar
  8. Coil, D.A. and Miller, A.D. 2004. Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J. Virol. 78, 10920–10926.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cuppoletti, J. and Abbott, A.J. 1990. Interaction of melittin with the (Na+ + K+)ATPase: evidence for a melittin-induced conformational change. Arch. Biochem. Biophys. 283, 249–257.CrossRefPubMedGoogle Scholar
  10. DeGrado, W.F., Musso, G.F., Lieber, M., Kaiser, E.T., and Kezdy, F.J. 1982. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys. J. 37, 329–338.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dempsey, C.E. 1990. The actions of melittin on membranes. Biochim. Biophys. Acta 1031, 143–161.CrossRefPubMedGoogle Scholar
  12. Dufourcq, J., Faucon, J.F., Fourche, G., Dasseux, J.L., Le Maire, M., and Gulik-Krzywicki, T. 1986a. Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. Biochim. Biophys. Acta 859, 33–48.CrossRefPubMedGoogle Scholar
  13. Dufourc, E.J., Smith, I.C., and Dufourcq, J. 1986b. Molecular details of melittin-induced lysis of phospholipid membranes as revealed by deuterium and phosphorus NMR. Biochemistry 25, 6448–6455.CrossRefPubMedGoogle Scholar
  14. Esser, A.F., Bartholomew, R.M., Jensen, F.C., and Muller-Eberhard, H.J. 1979. Disassembly of viral membranes by complement independent of channel formation. Proc. Natl. Acad. Sci. USA 76, 5843–5847.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gastaminza, P., Kapadia, S.B., and Chisari, F.V. 2006. Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. J. Virol. 80, 11074–11081.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Habermann, E. 1972. Bee and wasp venoms. Science 177, 314–322.CrossRefPubMedGoogle Scholar
  17. Hwang, D.S., Kim, S.K., and Bae, H. 2015. Therapeutic effects of bee venom on immunological and neurological diseases. Toxins 7, 2413–2421.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ji, H.F., Li, X.J., and Zhang, H.Y. 2009. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 10, 194–200.PubMedGoogle Scholar
  19. Kim, J.H., Weeratunga, P., Kim, M.S., Nikapitiya, C., Lee, B.H., Uddin, M.B., Kim, T.H., Yoon, J.E., Park, C., Ma, J.Y., et al. 2016. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement. Altern. Med. 16, 265.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kuchinka, E. and Seelig, J. 1989. Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid headgroup conformation. Biochemistry 28, 4216–4221.Google Scholar
  21. Lariviere, W.R. and Melzack, R. 1996. The bee venom test: a new tonic-pain test. Pain 66, 271–277.CrossRefPubMedGoogle Scholar
  22. Li, Q., Zhao, Z., Zhou, D., Chen, Y., Hong, W., Cao, L., Yang, J., Zhang, Y., Shi, W., Cao, Z., et al. 2011. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARSCoV and influenza H5N1 viruses. Peptides 32, 1518–1525.CrossRefPubMedGoogle Scholar
  23. Lorin, C., Combredet, C., Labrousse, V., Mollet, L., Desprès, P., and Tangy, F. 2005. A paediatric vaccination vector based on live attenuated measles vaccine. Therapie 60, 227–233.CrossRefPubMedGoogle Scholar
  24. Mahaney, J.E. and Thomas, D.D. 1991. Effects of melittin on molecular dynamics and Ca-ATPase activity in sarcoplasmic reticulum membranes: electron paramagnetic resonance. Biochemistry 30, 7171–7180.CrossRefPubMedGoogle Scholar
  25. Maher, S. and McClean, S. 2006. Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochem. Pharmacol. 71, 1289–1298.CrossRefPubMedGoogle Scholar
  26. Marcos, J.F., Beachy, R.N., Houghten, R.A., Blondelle, S.E., and Pérez-Payá, E. 1995. Inhibition of a plant virus infection by analogs of melittin. Proc. Natl. Acad. Sci. USA 92, 12466–12469.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Matanic, V.C. and Castilla, V. 2004. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int. J. Antimicrob. Agents 23, 382–389.CrossRefGoogle Scholar
  28. Park, H.J., Lee, S.H., Son, D.J., Oh, K.W., Kim, K.H., Song, H.S., Kim, G.J., Oh, G.T., Yoon, D.Y., and Hong, J.T. 2004. Antiarthritic effect of bee venom: inhibition of inflammation mediator generation by suppression of NF-kappaB through interaction with the p50 subunit. Arthritis Rheum. 50, 3504–3515.CrossRefPubMedGoogle Scholar
  29. Reed, L.J. and Muench, H. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27, 493–497.Google Scholar
  30. Scagnolari, C., Vicenzi, E., Bellomi, F., Stillitano, M.G., Pinna, D., Poli, G., Clementi, M., Dianzani, F., and Antonelli, G. 2004. Increased sensitivity of SARS-coronavirus to a combination of human type I and type II interferons. Antivir. Ther. 9, 1003–1011.PubMedGoogle Scholar
  31. Seal, B.S., King, D.J., and Bennett, J.D. 1995. Characterization of Newcastle disease virus isolates by reverse transcription PCR coupled to direct nucleotide sequencing and development of sequence database for pathotype prediction and molecular epidemiological analysis. J. Clin. Microbiol. 33, 2624–2630.PubMedPubMedCentralGoogle Scholar
  32. Son, D.J., Lee, J.W., Lee, Y.H., Song, H.S., Lee, C.K., and Hong, J.T. 2007. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther. 115, 246–270.CrossRefPubMedGoogle Scholar
  33. Strober, W. 2001. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. Appendix 3, Appendix 3B.Google Scholar
  34. Terwilliger, T.C., Weissman, L., and Eisenberg, D. 1982. The structure of melittin in the form I crystals and its implication for melittin’s lytic and surface activities. Biophys. J. 37, 353–361.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tosteson, M.T., Holmes, S.J., Razin, M., and Tosteson, D.C. 1985. Melittin lysis of red cells. J. Membr. Biol. 87, 35–44.CrossRefPubMedGoogle Scholar
  36. Triggiani, M., Granata, F., Frattini, A., and Marone, G. 2006. Activation of human inflammatory cells by secreted phospholipases A2. Biochim. Biophys. Acta. 1761, 1289–1300.CrossRefPubMedGoogle Scholar
  37. Wachinger, M., Kleinschmidt, A., Winder, D., von Pechmann, N., Ludvigsen, A., Neumann, M., Holle, R., Salmons, B., Erfle, V., and Brack-Werner, R. 1998. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J. Gen. Virol. 79 (Pt 4), 731–740.CrossRefPubMedGoogle Scholar
  38. Wachinger, M., Saermark, T., and Erfle, V. 1992. Influence of amphipathic peptides on the HIV-1 production in persistently infected T lymphoma cells. FEBS Lett. 309, 235–241.CrossRefPubMedGoogle Scholar
  39. Weeratunga, P., Uddin, M.B., Kim, M.S., Lee, B.H., Kim, T.H., Yoon, J.E., Ma, J.Y., Kim, H., and Lee, J.S. 2016. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components. J. Microbiol. 54, 57–70.CrossRefPubMedGoogle Scholar
  40. Wen, Y.Y., Chang, T.Y., Chen, S.T., Li, C., and Liu, H.S. 2003. Comparative study of enterovirus 71 infection of human cell lines. J. Med. Virol. 70, 109–118.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Md Bashir Uddin
    • 1
    • 2
  • Byeong-Hoon Lee
    • 1
  • Chamilani Nikapitiya
    • 1
  • Jae-Hoon Kim
    • 1
  • Tae-Hwan Kim
    • 1
  • Hyun-Cheol Lee
    • 1
  • Choul Goo Kim
    • 3
  • Jong-Soo Lee
    • 1
  • Chul-Joong Kim
    • 1
  1. 1.College of Veterinary MedicineChungnam National UniversityDaejeonRepublic of Korea
  2. 2.Faculty of Veterinary and Animal ScienceSylhet Agricultural UniversitySylhetBangladesh
  3. 3.Chung Jin Biotech CorporationAnsanRepublic of Korea

Personalised recommendations