Journal of Microbiology

, Volume 54, Issue 11, pp 713–723 | Cite as

Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra

  • Hye Min Kim
  • Min Jin Lee
  • Ji Young Jung
  • Chung Yeon Hwang
  • Mincheol Kim
  • Hee-Myong Ro
  • Jongsik Chun
  • Yoo Kyung Lee
Article
  • 191 Downloads

Abstract

The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.

Keywords

soil organic matter bacterial community structure soil pH total phosphorus depth profile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2016_6294_MOESM1_ESM.pdf (217 kb)
Statistical summary of pyrosequencing of 16S rRNA gene
12275_2016_6294_MOESM2_ESM.xlsx (57 kb)
Pearson correlations between soil properties and predicted functional gene categories

References

  1. ACIA. 2005. Arctic climate impact assessment. Cambridge University Press, NY, USA.Google Scholar
  2. Anisimov, O. and Fitzharris, B. 2001. Polar regions (Arctic and Antarctic). In McCarthy, O.F.C.J., Leary, N.A., Dokken, D.J., and White, K.S. (eds.), Climate change 2001: impacts, adaptation, and vulnerability contribution of working group II to the third assessment report of the intergovernmental panel on climate change, pp. 801–841. Cambridge University Press, Cambridge, UK.Google Scholar
  3. Bernstein, L. 1975. Effects of salinity and sodicity on plant growth. Annu. Rev. Phytopathol. 13, 295–312.CrossRefGoogle Scholar
  4. Bosse, U. and Frenzel, P. 1997. Activity and distribution of methane- oxidizing bacteria in flooded rice soil microcosms and in rice plants (oryza sativa). Appl. Environ. Microbiol. 63, 1199–1207.PubMedPubMedCentralGoogle Scholar
  5. Campbell, B.J., Polson, S.W., Hanson, T.E., Mack, M.C., and Schuur, E.A. 2010. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ. Microbiol. 12, 1842–1854.CrossRefPubMedGoogle Scholar
  6. Caporaso, J.G., Bittinger, K., Bushman, F.D., DeSantis, T.Z., Andersen, G.L., and Knight, R. 2010a. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267.CrossRefPubMedGoogle Scholar
  7. Caporaso, J., Kuczynski, J., and Stombaugh, J. 2010b. Qiime allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chapin, F., Barsdate, R., and Barel, D. 1978. Phosphorus cycling in alaskan coastal tundra: a hypothesis for the regulation of nutrient cycling. Oikos 31, 189–199.CrossRefGoogle Scholar
  9. Chu, H., Fierer, N., Lauber, C.L., Caporaso, J.G., Knight, R., and Grogan, P. 2010. Soil bacterial diversity in the arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12, 2998–3006.CrossRefPubMedGoogle Scholar
  10. Chun, J., Kim, K.Y., Lee, J.H., and Choi, Y. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454-GS FLX Titanium pyrosequencer. BMC Microbiol. 10, 101.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Clarke, K. and Gorley, R. 2006. Primer v6: user manual/tutorial. Primer-E Ltd., Plymouth, UK.Google Scholar
  12. Costello, E. 2007. Molecular phylogenetic characterization of high altitude soil microbial communities and novel, uncultivated bacterial lineages. ProQuest, Ann Arbor, USA.Google Scholar
  13. DeBruyn, J.M., Nixon, L.T., Fawaz, M.N., Johnson, A.M., and Radosevich, M. 2011. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol. 77, 6295–6300.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Deng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., Yuan, M., Yin, H., He, Z., Wu, L., Schuur, E.A., et al. 2015. Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska. Mol. Ecol. 24, 222–234.CrossRefPubMedGoogle Scholar
  15. DeSantis, T.J., Hugenholtz, P., Keller, K., Brodie, E., Larsen, N., Piceno, Y., Phan, R., and Andersen, G. 2006. Nast: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res. 34, W394–W399.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.CrossRefPubMedGoogle Scholar
  17. Eilers, K.G., Debenport, S., Anderson, S., and Fierer, N. 2012. Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol. Biochem. 50, 58–65.CrossRefGoogle Scholar
  18. Emerson, D., Field, E.K., Chertkov, O., Davenport, K.W., Goodwin, L., Munk, C., Nolan, M., and Woyke, T. 2013. Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Front. Microbiol. 4, 254.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fierer, N. and Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fierer, N., Lauber, C., Ramirez, K., Zaneveld, J., Bradford, M., and Knight, R. 2012a. Comparative metagenomic, phylogenetic, and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007–1017.CrossRefPubMedGoogle Scholar
  21. Fierer, N., Leff, J.W., Adams, B.J., Nielsen, U.N., Bates, S.T., Lauber, C.L., Owens, S., Gilbert, J.A., Wall, D.H., and Caporaso, J.G. 2012b. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. USA 109, 21390–21395.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fierer, N., Schimel, J.P., and Holden, P.A. 2003. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167–176.CrossRefGoogle Scholar
  23. Finzi, A.C., Austin, A.T., Cleland, E.E., Frey, S.D., Houlton, B.Z., and Wallenstein, M.D. 2011. Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front. Ecol. Environ. 9, 61–67.CrossRefGoogle Scholar
  24. Frank-Fahle, B.A., Yergeau, E., Greer, C.W., Lantuit, H., and Wagner, D. 2014. Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic. PLoS One 9, e84761.CrossRefGoogle Scholar
  25. Gee, G. and Bauder, J. 1986. Water content. In Klute, A. (ed.), Methods of soil analysis part 1: physical and mineralogical methods, pp. 383–411. American Society of Agronomy, Inc. and Soil Science Society of America, Inc., Madison, USA.Google Scholar
  26. Gittel, A., Bárta, J., Kohoutová, I., Mikutta, R., Owens, S., Gilbert, J., Schnecker, J., Wild, B., Hannisdal, B., and Maerz, J. 2014. Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J. 8, 841–853.CrossRefPubMedGoogle Scholar
  27. Griffiths, B., Spilles, A., and Bonkowski, M. 2012. C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess. Ecol. Proc. 1, 6.CrossRefGoogle Scholar
  28. Grosse, G., Harden, J., Turetsky, M., McGuire, A.M., Camill, P., Tarnocai, C., Frolking, S., Schuur, E.A.G., Jorgenson, T., Marchenko, S., et al. 2011. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. 116, G00K06.CrossRefGoogle Scholar
  29. Jansson, J.K. and Tas, N. 2014. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425.CrossRefPubMedGoogle Scholar
  30. Johnstone, J.F., Chapin, F.S., Hollingsworth, T.N., Mack, M.C., Romanovsky, V., and Turetsky, M. 2010. Fire, climate change, and forest resilience in interior Alaska. Can. J. For. Res. 40, 1302–1312.CrossRefGoogle Scholar
  31. Kane, D.L., Hinzman, L.D., and Zarling, J.P. 1991. Thermal response of the active layer to climate warming in a permafrost environment. Cold Reg. Sci. Technol. 19, 111–122.CrossRefGoogle Scholar
  32. Kim, H.M., Jung, J.Y., Yergeau, E., Hwang, C.Y., Hinzman, L., Nam, S., Hong, S.G., Kim, O.S., Chun, J., and Lee, Y.K. 2014. Bacterial community structure and soil properties of a subarctic tundra soil in council, Alaska. FEMS Microbiol. Ecol. 89, 465–475.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kirchman, D.L., Cottrell, M.T., and Lovejoy, C. 2010. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ. Microbiol. 12, 1132–1143.CrossRefPubMedGoogle Scholar
  34. Koyama, A., Wallenstein, M.D., Simpson, R.T., and Moore, J.C. 2014. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Front. Microbiol. 5, 516CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kuo, S. 1996. Phosphorus. In Sparks, D.L. (ed.), Methods of soil analysis Part 3: Chemical Methods, pp. 869–919. American Society of Agronomy, Inc. and Soil Science Society of America, Inc., Madison, USA.Google Scholar
  36. Langille, M.G., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lauber, C.L., Hamady, M., Knight, R., and Fierer, N. 2009. Pyrosequencing- based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lauro, F.M., McDougald, D., Thomas, T., Williams, T.J., Egan, S., Rice, S., DeMaere, M.Z., Ting, L., Ertan, H., and Johnson, J. 2009. The genomic basis of trophic strategy in marine bacteria. Proc. Natl. Acad. Sci. USA 106, 15527–15533.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Liu, L., Zhang, T., Gilliam, F.S., Gundersen, P., Zhang, W., Chen, H., and Mo, J. 2013. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. PLoS One 8, e61188.CrossRefGoogle Scholar
  40. Lozupone, C., Hamady, M., and Knight, R. 2006. Unifrac–an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7, 371CrossRefPubMedPubMedCentralGoogle Scholar
  41. Luo, Y., Wan, S., Hui, D., and Wallace, L.L. 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622–625.CrossRefPubMedGoogle Scholar
  42. Mack, M., Schuur, E., Bret-Harte, M., Shaver, G., and Chapin, F. 2004. Ecosystem carbon storage in Arctic tundra reduced by longterm nutrient fertilization. Nature 431, 440–443.CrossRefPubMedGoogle Scholar
  43. Mackelprang, R., Waldrop, M.P., DeAngelis, K.M., David, M.M., Chavarria, K.L., Blazewicz, S.J., Rubin, E.M., and Jansson, J.K. 2011. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371.CrossRefPubMedGoogle Scholar
  44. Merilä, P., Malmivaara-Lämsä, M., Spetz, P., Stark, S., Vierikko, K., Derome, J., and Fritze, H. 2010. Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest. Appl. Soil Ecol. 46, 259–267.CrossRefGoogle Scholar
  45. Neufeld, J.D. and Mohn, W.W. 2005. Unexpectedly high bacterial diversity in Arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl. Environ. Microbiol. 71, 5710–5718.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Park, J.S. and Lee, E.J. 2014. Geostatistical analyses and spatial distribution patterns of tundra vegetation in council, Alaska. J. Ecol. Environ. 37, 53–60.CrossRefGoogle Scholar
  47. Preuss, I., Knoblauch, C., Gebert, J., and Pfeiffer, E.M. 2013. Improved quantification of microbial CH4 oxidation efficiency in arctic wetland soils using carbon isotope fractionation. Biogeosciences 10, 2539–2552.CrossRefGoogle Scholar
  48. Price, M.N., Dehal, P.S., and Arkin, A.P. 2010. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490.CrossRefGoogle Scholar
  49. Quince, C., Lanzen, A., Davenport, R.J., and Turnbaugh, P.J. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinform. 12, 38CrossRefGoogle Scholar
  50. R Core Team. 2014. R: a language and environment for statistical computing. Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  51. Rumpel, C. and Kögel-Knabner, I. 2011. Deep soil organic matter–a key but poorly understood component of terrestrial C cycle. Plant Soil 338, 143–158.CrossRefGoogle Scholar
  52. Schostag, M., Stibal, M., Jacobsen, C.S., Baelum, J., Tas, N., Elberling, B., Jansson, J.K., Semenchuk, P., and Prieme, A. 2015. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses. Front. Microbiol. 6, 399CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schuur, E.A., Vogel, J.G., Crummer, K.G., Lee, H., Sickman, J.O., and Osterkamp, T.E. 2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559.CrossRefPubMedGoogle Scholar
  54. Shen, C., Xiong, J., Zhang, H., Feng, Y., Lin, X., Li, X., Liang, W., and Chu, H. 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211.CrossRefGoogle Scholar
  55. Soil Survey Staff. 2014. Keys to soil taxonomy. 12th ed, USDA-Natural Resources Conservation Service, Washington, USA.Google Scholar
  56. Tarnocai, C., Canadell, J.G., Schuur, E.A.G., Kuhry, P., Mazhitova, G., and Zimov, S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cycles 23, GB2023.CrossRefGoogle Scholar
  57. Tas, N., Prestat, E., McFarland, J.W., Wickland, K.P., Knight, R., Berhe, A.A., Jorgenson, T., Waldrop, M.P., and Jansson, J.K. 2014. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. 8, 1904–1919.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Uroz, S., Ioannidis, P., Lengelle, J., Cebron, A., Morin, E., Buee, M., and Martin, F. 2013. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS One 8, e55929.CrossRefGoogle Scholar
  59. Wagner, D. and Liebner, S. 2009. Global warming and carbon dynamics in permafrost soils: methane production and oxidation. In Margesin, R. (ed.), Permafrost soils, Springer, Berlin, Germany.Google Scholar
  60. Wallenstein, M.D., McMahon, S., and Schimel, J. 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol. Ecol. 59, 428–435.CrossRefPubMedGoogle Scholar
  61. Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. 2007. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Werner, J.J., Koren, O., Hugenholtz, P., DeSantis, T.Z., Walters, W.A., Caporaso, J.G., Angenent, L.T., Knight, R., and Ley, R.E. 2012. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J. 6, 94–103.CrossRefPubMedGoogle Scholar
  63. Wilhelm, R.C., Niederberger, T.D., Greer, C., and Whyte, L.G. 2011. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can. J. Microbiol. 57, 303–315.CrossRefPubMedGoogle Scholar
  64. Xue, K., Yuan, M.M., Shi, Z., Qin, Y., Deng, Y., Cheng, L., Wu, L., He, Z., Van Nostrand, J.D., Bracho, R., et al. 2016. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6, 595–600.CrossRefGoogle Scholar
  65. Yergeau, E., Hogues, H., Whyte, L.G., and Greer, C.W. 2010. The functional potential of high arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J. 4, 1206–1214.CrossRefPubMedGoogle Scholar
  66. Yoshikawa, K. and Hinzman, L.D. 2003. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska. Permafrost Periglac. 14, 151–160.CrossRefGoogle Scholar
  67. Zhang, T., Barry, R.G., Knowles, K., Heginbottom, J.A., and Brown, J. 1999. Statistics and characteristics of permafrost and groundice distribution in the Northern Hemisphere. Polar Geogr. 23, 132–154.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hye Min Kim
    • 1
    • 2
  • Min Jin Lee
    • 3
  • Ji Young Jung
    • 1
  • Chung Yeon Hwang
    • 1
  • Mincheol Kim
    • 1
  • Hee-Myong Ro
    • 3
  • Jongsik Chun
    • 2
  • Yoo Kyung Lee
    • 1
  1. 1.Korea Polar Research InstituteKIOSTIncheonRepublic of Korea
  2. 2.School of Biological SciencesSeoul National UniversitySeoulRepublic of Korea
  3. 3.Department of Agricultural Biotechnology, Research Institute for Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations