Advertisement

Journal of Microbiology

, Volume 54, Issue 7, pp 459–467 | Cite as

Clinical relevance of infections with zoonotic and human oral species of Campylobacter

  • Soomin Lee
  • Jeeyeon Lee
  • Jimyeong Ha
  • Yukyung Choi
  • Sejeong Kim
  • Heeyoung Lee
  • Yohan YoonEmail author
  • Kyoung-Hee ChoiEmail author
Minireview

Abstract

Genus Campylobacter has been recognized as a causative bacterial agent of animal and human diseases. Human Campylobacter infections have caused more concern. Campylobacters can be classified into two groups in terms of their original host: zoonotic and human oral species. The major zoonotic species are Campylobacter jejuni and Campylobacter coli, which mostly reside in the intestines of avian species and are transmitted to humans via consumption of contaminated poultry products, thus causing human gastroenteritis and other diseases as sequelae. The other campylobacters, human oral species, include C. concisus, C. showae, C. gracilis, C. ureolyticus, C. curvus, and C. rectus. These species are isolated from the oral cavity, natural colonization site, but have potential clinical relevance in the periodontal region to varying extent. Two species, C. jejuni and C. coli, are believed to be mainly associated with intestinal diseases, but recent studies suggested that oral Campylobacter species also play a significant role in intestinal diseases. This review offers an outline of the two Campylobacter groups (zoonotic and human oral), their virulence traits, and the associated illnesses including gastroenteritis.

Keywords

Campylobacter gastroenteritis periodontitis inflammatory bowel disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acheson, D. and Allos, B.M. 2001. Campylobacter jejuni infections: update on emerging issues and trends. Clin. Infect. Dis. 32, 1201–1206.CrossRefGoogle Scholar
  2. Allos, B.M. 2001. Campylobacter jejuni infections: update on emerging issues and trends. Clin. Infect. Dis. 32, 1201–1206.PubMedCrossRefGoogle Scholar
  3. Allos, B.M. and Blaser, M.J. 1995. Campylobacter jejuni and the expanding spectrum of related infections. Clin. Infect. Dis. 20, 1092–1099.PubMedCrossRefGoogle Scholar
  4. Altekruse, S.F., Stern, N.J., Fields, P.I., and Swerdlow, D.L. 1999. Campylobacter jejuni-an emerging foodborne pathogen. Emerg. Infect. Dis. 5, 28–35.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anderson, M.L. 2007. Infectious causes of bovine abortion during mid- to late-gestation. Theriogenology 68, 474–486.PubMedCrossRefGoogle Scholar
  6. Anderson, M.L., Blanchard, P.C., Barr, B.C., Dubey, J.P., Hoffman, R.L., and Conrad, P.A. 1991. Neospora-like protozoan infection as a major cause of abortion in California dairy cattle. J. Am. Vet. Med. Assoc. 198, 241–244.PubMedGoogle Scholar
  7. Anderson, M.L., Blanchard, P.C., Barr, B.C., and Hoffman, R. 1990. A survey of causes of bovine abortion occurring in the San Joaquin Valley, California. J. Vet. Diag. Invest. 2, 283–287.CrossRefGoogle Scholar
  8. Babakhani, F.K., Bradley, G.A., and Joens, L.A. 1993. Newborn piglet model for campylobacteriosis. Infect. Immun. 61, 3466–3475.PubMedPubMedCentralGoogle Scholar
  9. Bolton, D.J. 2015. Campylobacter virulence and survival factors. Food Microbiol. 48, 99–108.PubMedCrossRefGoogle Scholar
  10. Bolton, W.D., Durrell, W.B., Wadsworth, J.R., and Murray, R.W. 1969. A survey of abortions in Vermont dairy cattle. J. Am. Vet. Med. Assoc. 155, 500–503.PubMedGoogle Scholar
  11. Bourke, B., Chan, V.L., and Sherman, P. 1998. Campylobacter upsaliensis: waiting in the wings. Clin. Microbiol. Rev. 14, 440–449.Google Scholar
  12. Bullman, S., Corcoran, D., O’Leary, J., Lucey, B., Byrne, D., and Sleator, R.D. 2011a. Campylobacter ureolyticus: an emerging gastrointestinal pathogen? FEMS Immunol. Med. Microbiol. 61, 228–230.PubMedCrossRefGoogle Scholar
  13. Bullman, S., Lucid, A., Corcoran, D., Slcator, R.D., and Luccy, B. 2013. Genomic investigation into strain heterogenecity and pathogenic potential of the emerging gastrointestinal pathogen Campylobacter ureolyticus. PLoS One 8, e71515.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bullman, S., O’Leary, J., Corcoran, D., Sleator, R.D., and Lucey, B. 2011b. Molecular-based detection of non-culturable and emerging campylobacteria in patients presenting with gastroenteritis. Epidemiol. Infect. 18, 1–5.Google Scholar
  15. Burgos-Portugal, J.A., Kaakoush, N.O., Raftery, M.J., and Mitchell, H.M. 2012. Pathogenic potential of Campylobacter urelyticus. Infect. Immun. 80, 883–890.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Burrough, E.R., Sahin, O., Plummer, P.J., Zhang, Q.J., and Yaeger, M.J. 2009. Pathogenicity of an emergent, ovine abortifacient Campylobacter jejuni clone orally inoculated into pregnant guinea pig. Am. J. Vet. Res. 70, 1269–1276.PubMedCrossRefGoogle Scholar
  17. Castaño-Rodríguez, N., Kaakoush, N.O., Lee, W.S., and Mitchell, H.M. 2015. Dual role of Helicobacter and Campylobacter species in IBD: a systematic review and meta-analysis. Gut doi: 10.1136/gutjnl-2015-310545.Google Scholar
  18. Colombo, A.P., Boches, S.K., Cotton, S.L., Goodson, J.M., Kent, R., Haffajee, A.D., Socransky, S.S., Hasturk, H., Van Dyke, T.E., Dewhirst, F., et al. 2009. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis and periodontal health using the human oral microbe identification microarray (HOMIM). J. Periodontol. 80, 1421–1432.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dastia, J.I., Tareen, M., Lugert, R., Zautner, A.E., and Groß, U. 2010. Campylobacter jejuni: a brief overview on pathogenicityassociated factors and disease-mediating mechanisms. Int. J. Med. Microbiol. 300, 205–211.CrossRefGoogle Scholar
  20. Debruyne, L., Gevers, D., and Vandamme, P. 2005. Taxonomy of the family Campylobacteraceae. In Nachamkin, I. and Blaser, M.J. (eds.), Campylobacter, 3rd ed., pp. 3–27. American Society of Microbiology, Washington, D.C., USA.Google Scholar
  21. Deshpande, N.P., Kaakoush, N.O., Wilkins, M.R., and Mitchell, H.M. 2013. Comparative genomics of Campylobacter concisus isolates reveals genetic diversity and provides insights into disease association. BMC Genomics 14, 585–598.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dzink, J.L., Tanner, A.C., Haffajee, A.D., and Socransky, S.S. 1985. Gram-negative species associated with active destructive periodontal lesions. J. Clin. Periodontol. 12, 648–659.PubMedCrossRefGoogle Scholar
  23. Etoh, Y., Dewhist, F.E., Paster, B.J., Yamamoto, A., and Goto, N. 1993. Campylobacter showae sp. nov., isolated from the human oral cavity. Int. J. Syst. Bacteriol. 43, 631–639.PubMedCrossRefGoogle Scholar
  24. Fauchere, J.L., Rosenau, A., Veron, M., Moyen, E.N., Richard, S., and Pfister, A. 1986. Association with HeLa cells of Campylobacter jejuni and Campylobacter coli isolated from human feces. Infect. Immun. 54, 283–287.PubMedPubMedCentralGoogle Scholar
  25. Field, L.H., Headley, V.L., Underwood, J.L., Payne, S.M., and Berry, L.J. 1986. The chicken embryo as a model for Campylobacter invasion: comparative virulence of human isolates of Campylo bacter jejuni and Campylobacter coli. Infect. Immun. 54, 118–125.PubMedPubMedCentralGoogle Scholar
  26. Fujihara, N., Takakura, S., Saito, T., Linuma, Y., and Ichiyama, S. 2006. A case of perinatal sepsis by Campylobacter fetus subsp. fetus infection successfully treated with carbapenem - case report and literature review. J. Infect. 53, e199–e202.PubMedCrossRefGoogle Scholar
  27. Galanis, E. 2007. Campylobacter and bacterial gastroenteritis. Can. Med. Assoc. J. 177, 570–571.CrossRefGoogle Scholar
  28. Garmory, H.S. and Titball, R.W. 2004. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect. Immun. 72, 6757–6763.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gmür, R. and Guggenheim, B. 1994. Interdental supragingival plaque-a natural habitat of Actinobacillus actinomycetemcomitans, Bacteroides forsythus, Campylobacter rectus, and Prevotella nigrescens. J. Dent. Res. 73, 1421–1428.PubMedGoogle Scholar
  30. Guerry, P. 2007. Campylobacter flagella: not just for motility. Trends Microbiol. 15, 456–461.PubMedCrossRefGoogle Scholar
  31. Hansen, R., Berry, S.H., Mukhopadhya, I., Thomson, J.M., Saunders, K.A., Nicholl, C.E., Bisset, W.M., Loganathan, S., Mahdi, G., Kastner-Cole, D., et al. 2013. The microaerophilic microbiota of de-novo paediatric inflammatory bowel disease: the BISCUIT study. PLoS One 8, e58825.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Henne, K., Fuchs, F., Kruth, S., Horz, H.P., and Conrads, G. 2014. Shifts in Campylobacter species abundance may reflect general microbial community shifts in periodontitis progression. J. Oral Microbiol. 6, 25874.PubMedCrossRefGoogle Scholar
  33. Hess, D.L.J., Pettersson, A.M., Rijnsburger, M.C., Herbrink, P., van den Berg, H.P., and Ang, C.W. 2012. Gastroenteritis caused by Campylobacter concisus. J. Med. Microbiol. 61, 746–749.PubMedCrossRefGoogle Scholar
  34. Hickey, T.E., Baqar, S., Bourgeois, A.L., Ewing, C.P., and Guerry, P. 1999. Campylobacter jejuni-stimulated secretion of interleukin-8 by INT407 cells. Infect. Immun. 67, 88–93.PubMedPubMedCentralGoogle Scholar
  35. Horrocks, S.M., Anderson, R.C., Nisbet, D.J., and Ricke, S.C. 2009. Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe 15, 18–25.PubMedCrossRefGoogle Scholar
  36. Hubber, W.T., Booth, G.D., Bolton, W.D., Dunne, H.W., McEntee, K., Smith, R.E., and Tourtellotte, M.E. 1973. Bovine abortions in five northeastern states, 1960–1970: evaluation of diagnostic laboratory data. Cornell Vet. 63, 291–316.Google Scholar
  37. Humphrey, C.D., Montag, D.M., and Pittman, F.E. 1985. Experimental infection of hamsters with Campylobacter jejuni. J. Infect. Dis. 151, 485–493.PubMedCrossRefGoogle Scholar
  38. Humphrey, T., O’Brien, S., and Madsen, M. 2007. Campylobacters as zoonotic pathogens: a food production perspective. Int. J. Food Microbiol. 117, 237–257.PubMedCrossRefGoogle Scholar
  39. Ichiyama, S., Hirai, S., Minami, T., Nishiyama, Y., Shimizu, S., Shimokata, K., and Ohta, M. 1998. Campylobacter fetus subspecies fetus cellulitis associated with bacteremia in debilitated hosts. Clin. Infect. Dis. 27, 252–255.PubMedCrossRefGoogle Scholar
  40. Ihara, H., Miura, T., Kato, T., Ishihara, K., Nakagawa, T., Yamada, S., and Okuda, K. 2003. Detection of Campylobacter rectus in periodontitis sites by monoclonal antibodies. J. Periodontal Res. 38, 64–72.PubMedCrossRefGoogle Scholar
  41. Jagannathan, A. and Penn, C. 2005. Motility. In Ketley, J.M. and Konkel, M.E. (eds.), Campylobacter: Molecular and cellular biology, pp. 331–347. Horizon Bioscience, Norfolk, UK.Google Scholar
  42. Johnson, W.M. and Lior, H. 1988. A new heat-labile cytolethal distending toxin (CLDT) produced by Campylobacter spp. Microb. Pathog. 4, 115–126.PubMedCrossRefGoogle Scholar
  43. Kaakoush, N.O., Castaño-Rodríguez, N., Mitchell, H.M., and Man, S.M. 2015. Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev. 28, 687–720.PubMedCrossRefGoogle Scholar
  44. Kaakoush, N.O., Deshpande, N.P., Wilkins, M.R., Tan, C.G., Burgos- Portugal, J.A., Raftery, M.J., Day, A.S., Lemberg, D.A., and Mitchell, H. 2011. The pathogenic potential of Campylobacter concisus strains associated with chronic intestinal diseases. PLoS One 6, e29045.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kaakoush, N.O. and Mitchell, H.M. 2012. Campylobacter concisus - a new player in intestinal disease. Front. Cell. Infect. Microbiol. 2, 4.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Karlyshev, A.V. and Wren, B.W. 2001. Detection and initial characterization of novel capsular polysaccharide among diverse Campylobacter jejuni strains using alcian blue dye. J. Clin. Microbiol. 39, 279–284.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kirkbride, D.A. 1992. Etiologic agents detected in a 10-year study of bovine abortions and stillbirths. J. Vet. Diag. Invest. 4, 175–180.CrossRefGoogle Scholar
  48. Kirkbride, C.A., Bicknell, E.J., Reed, D.E., Robl, M.G., Knudtson, W.U., and Wohlgemuth, K. 1973. A diagnostic survey of bovine abortion and stillbirth in the northern plains states. J. Am. Vet. Med. Assoc. 162, 556–560.PubMedGoogle Scholar
  49. Konkel, M.E., Garvis, S.G., Tipton, S.L., Anderson, D.E.Jr., and Cieplak, W.Jr. 1997. Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol. Microbiol. 24, 953–963.PubMedCrossRefGoogle Scholar
  50. Konkel, M.E., Monteville, M.R., Rivera-Amill, V., and Joens, L.A. 2001. The pathogenesis of Campylobacter jejuni-mediated enteritis. Curr. Issues Intest. Microbiol. 2, 55–71.PubMedGoogle Scholar
  51. Krause, R., Ramschak-Schwarzer, S., Gorkiewicz, G., Schnedl, W.J., Feierl, G., Wenisch, D., and Reisinger, E.C. 2002. Recurrent septicemia due to Campylobacter fetus and Campylobacter lari in an immunocompetent patient. Infection 30, 171–174.PubMedCrossRefGoogle Scholar
  52. Krause-Gruszczynska, M., Rohde, M., Hartig, R., Genth, H., Schmidt, G., Keo, T., König, W., Miller, W.G., Konkel, M.E., and Backert, S. 2007a. Role of small Rho GTPases Rac1 and Cdc42 in host cell invasion of Campylobacter jejuni. Cell. Microbiol. 9, 2431–2444.PubMedCrossRefGoogle Scholar
  53. Krause-Gruszczynska, M., van Alphen, L.B., Oyarzabal, O.A., Alter, T., Hänel, I., Schliephake, A., König, W., van Putten, J.P., Konkel, M.E., and Backert, S. 2007b. Expression patterns and role of the CadF protein in Campylobacter jejuni and Campylobacter coli. FEMS Microbiol. Lett. 274, 9–16.PubMedCrossRefGoogle Scholar
  54. Kuroki, S., Saida, T., Nukina, M., Haruta, T., Yoshioka, M., Kobayashi, Y., and Nakanishi, H. 1993. Campylobacter jejuni strains from patients with Guillain-Barré syndrome belong mostly to Penner serogrpup 19 and contain ß-N-acetylglucosamine residues. Ann. Neurol. 33, 243–247.PubMedCrossRefGoogle Scholar
  55. Lai, C.H., Oshima, K., Slots, J., and Listgarten, M.A. 1992. Wolinella recta in adult gingivitis and periodontitis. J. Periodontal Res. 27, 8–14.PubMedCrossRefGoogle Scholar
  56. Lastovica, A.J. and le Roux, E. 2000. Efficient isolation of Campylobacteria from stools. J. Clin. Microbiol. 38, 2798–2799.PubMedPubMedCentralGoogle Scholar
  57. Lee, J., Ha, J., Kim S., Lee H., Lee, S., and Yoon, Y. 2015. Quantitative microbial risk assessment for Campylobacter spp. on ham in Korea. Korean J. Food Sci. An. 35, 674–682.CrossRefGoogle Scholar
  58. Leo, Q.J. and Bolger, D.T. Jr. 2014. Septic cavernous sinus thrombosis due to Campylobacter rectus infection. BMJ Case Rep. bcr-2013203351.Google Scholar
  59. Louwen, R., Heikema, A., van Belkum, A., Ott, A., Gilbert, M., Ang, W., Endtz, H.P., Bergman, M.P., and Nieuwenhuis, E.E. 2008. The sialylated lipooligosaccharide outer core in Campylobacter jejuni is an important determinant for epithelial cell invasion. Infect. Immun. 76, 4431–4438.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Macuch, P.J. and Tanner, A.C.R. 2000. Campylobacter species in health, gingivitis, and periodontitis. J. Dent. Res. 79, 785–792.PubMedCrossRefGoogle Scholar
  61. Mahendran, V., Riordan, S.M., Grimm, M.C., Tran, T.A., Major, J., Kaakoush, N.O., Mitchell, H., and Zhang, L. 2011. Prevalence of Campylobacter species in adult Crohn’s disease and the preferential colonization sites of Campylobacter species in the human intestine. PLoS One 6, e25417.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Man, S.M. 2011. The clinical importance of emerging Campylobacter species. Nat. Rev. Gastroenterol. Hepatol. 8, 669–685.PubMedCrossRefGoogle Scholar
  63. Man, S.M., Zhang, L., Day, A.S., Leach, S.T., Lemberg, D.A., and Mitchell, H. 2010. Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn’s disease. Inflamm. Bowel Dis. 16, 1008–1016.PubMedCrossRefGoogle Scholar
  64. Mannering, S.A., West, D.M., Fenwick, S.G., Marchant, R.M., and O’Connell, K. 2006. Pulsed-field gel electrophoresis of Campylobacter jejuni sheep abortion isolates. Vet. Microbiol. 115, 237–242.PubMedCrossRefGoogle Scholar
  65. Meier, P.A., Dooley, D.P., Jorgensen, J.H., Sanders, C.C., Huang, W.M., and Patterson, J.E. 1998. Development of quinolone-resistant Campylobacter fetus bacteremia in human immunodeficiency virus-infected patients. J. Infect. Dis. 177, 951–954.PubMedCrossRefGoogle Scholar
  66. Molodecky, N.A., Soon, I.S., Rabi, D.M., Ghali, W.A., Ferris, M., Chernoff, G., Benchimol, E.I., Panaccione, R., Ghosh, S., Barkema, H.W., et al. 2012. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54.PubMedCrossRefGoogle Scholar
  67. Moore, J.E., Corcoran, D., Dooley, J.S., Fanning, S., Lucey, B., Matsuda, M., McDowell, D.A., Mégraud, F., Millar, B.C., O’Mahony, R., et al. 2005. Campylobacter. Vet. Res. 36, 351–382.PubMedCrossRefGoogle Scholar
  68. Moore, J.E., Corcoran, D., Dooley, J.S., Fanning, S., Lucey, B., Matsuda, M., Moore, W.E., Holdeman, L.V., Cato, E.P., Smibert, R.M., et al. 1985. Comparative bacteriology of juvenile periodontitis. Infect. Immun. 48, 507–519.PubMedPubMedCentralGoogle Scholar
  69. Moore, L.V., Moore, W.E., Cato, E.P., Smibert, R.M., Burmeister, J.A., Best, A.M., and Ranney, R.R. 1987. Bacteriology of human gingivitis. J. Dent. Res. 66, 989–995.PubMedCrossRefGoogle Scholar
  70. Morris, C.N., Scully, B., and Garvey, G.J. 1998. Campylobacter lari associated with pacemaker infection and bacteremia. Clin. Infect. Dis. 27, 220–221.PubMedCrossRefGoogle Scholar
  71. Mukhopadhya, I., Thomson, J.M., Hansen, R., Berry, S.H., El-Omar, E.M., and Hold, G.L. 2011. Detection of Campylobacter concisus and other Campylobacter species in colonic biopsies from adults with ulcerative colitis. PLoS One 6, e21490.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nagy, M.T. and Hla, S.M. 2013. Campylobacter fetus sepsis in an immunocompetent patient with haematological complication. BMJ Case Rep. bcr2013008610.Google Scholar
  73. Nielsen, H.L., Ejlertsen, T., Engberg, J., and Nielsen, H. 2013. High incidence of Campylobacter concisus in gastroenteritis in North Jutland, Denmark: a population-based study. Clin. Microbiol. Infect. 19, 445–450.PubMedCrossRefGoogle Scholar
  74. Nielsen, E.M., Engberg, J., and Madsen, M. 1997. Distribution of serotypes of Campylobacter jejuni and C. coli from danish patients, poultry, cattle, and swine. FEMS Immunol. Med. Microbiol. 19, 47–56.PubMedCrossRefGoogle Scholar
  75. Nielsen, H., Hansen, K., Kristensen, B., Ejlertsen, T., Østergaard, C., and Schønheyder, H.C. 2010. Bacteraemia as a result of Campylobacter species: a population-based study of epidemiology and clinical risk factors. Clin. Microbiol. Infect. 16, 57–61.PubMedCrossRefGoogle Scholar
  76. O’Donovan, D., Corcoran, G.D., Lucey, B., and Sleator, R.D. 2014. Campylobacter ureolyticus. Virulence 5, 498–506.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pai, C.H., Sorger, S., Lackman, L., Sinai, R.E., and Marks, M.I. 1979. Campylobacter gastroenteritis in children. J. Pediatr. 94, 589–591.PubMedCrossRefGoogle Scholar
  78. Pei, Z. and Blaser, M.J. 1993. PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in Gram-negative nutrient transport systems. J. Biol. Chem. 268, 18717–18725.PubMedGoogle Scholar
  79. Petersen, P.E. and Ogawa, H. 2005. Strengthening the prevention of periodontal disease: the WHO approach. J. Periodontol. 76, 2187–2193.PubMedCrossRefGoogle Scholar
  80. Pigrau, C., Bartolome, R., Almirante, B., Planes, A.M., Gavalda, J., and Pahissa, A. 1997. Bacteremia due to Campylobacter species: clinical findings and antimicrobial susceptibility patterns. Clin. Infect. Dis. 25, 1414–1420.PubMedCrossRefGoogle Scholar
  81. Pihlstrom, B.L., Michalowicz, B.S., and Johnson, N.W. 2005. Periodontal diseases. Lancet 366, 1809–1820.PubMedCrossRefGoogle Scholar
  82. Plummer, P., Sahin, O., Burrough, E., Sippy, R., Mou, K., Rabenold, J., Yaeger, M., and Zhang, Q. 2012. Critical role of LuxS in the virulence of Campylobacter jejuni in a guinea pig model of abortion. Infect. Immun. 80, 585–593.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Popova, C., Dosseva-Panova, V., and Panov, V. 2013. Microbiology of periodontal diseases. a review. Biotechnol. Biotec. Eq. 27, 3754–3759.CrossRefGoogle Scholar
  84. Portner, D.C., Leuschner, R.G., and Murray, B.S. 2007. Optimising the viability during storage of freeze-dried cell preparations of Campylobacter jejuni. Cryobiology 54, 265–270.PubMedCrossRefGoogle Scholar
  85. Purdy, D., Buswell, C.M., and Hodgson, A.E. 2000. Characterisation of cytolethal distending toxin (CDT) mutants of Campylobacter jejuni. J. Med. Microbiol. 49, 473–479.PubMedCrossRefGoogle Scholar
  86. Sahin, O., Fitzgerald, C., Stroika, S., Zhao, S., Sippy, R.J., Kwan, P., Plummer, P.J., Han, J., Yaeger, M.J., and Zhang, Q. 2012. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States. J. Clin. Microbiol. 50, 680–687.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sahin, O., Plummer, P.J., Jordan, D.M., Sulaj, K., Pereira, S., Robbe- Austerman, S., Wang, L., Yaeger, M.J., Hoffman, L.J., and Zhang, Q. 2008. Emergence of a tetracycline-resistant Campylobacter jejuni clone associated with outbreaks of ovine abortion in the United States. J. Clin. Microbiol. 46, 1663–1671.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sakran, W., Raz, R., Levi, Y., Colodner, R., and Koren, A. 1998. Campylobacter bacteremia and pneumonia in two splenectomized patients. Eur. J. Clin. Microbiol. Infect. Dis. 18, 496–498.CrossRefGoogle Scholar
  89. Salazar-Lindo, E., Sack, R.B., Chea-Woo, E., Kay, B.A., Piscoya, Z.A., Leon-Barua, R., and Yi, A. 1986. Early treatment with erythromycin of Campylobacter jejuni-associated dysentery in children. J. Pediatr. 109, 355–360.PubMedCrossRefGoogle Scholar
  90. Sartor, R.B. 2006. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 390–407.PubMedCrossRefGoogle Scholar
  91. Schønheyder, H.C., Sogaard, P., and Frederiksen, W. 1995. A survey of Campylobacter bacteremia in three Danish countries, 1989 to 1994. Scand. J. Infect. Dis. 27, 145–148.PubMedCrossRefGoogle Scholar
  92. Shane, S.M. 2000. Campylobacter infection of commercial poultry. Rev. Sci. Tech. 19, 376–395.PubMedGoogle Scholar
  93. Simor, A.E., Karmali, M.A., Jadavji, T., and Roscoe, M. 1986. Abortion and perinatal sepsis associated with Campylobacter infection. Rev. Infect. Dis. 8, 397–402.PubMedCrossRefGoogle Scholar
  94. Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G.R., Chiche, J.D., Coopersmith, C.M., et al. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 801–810.PubMedCrossRefGoogle Scholar
  95. Skirrow, M.B. 1977. Campylobacter enteritis: a “new” disease. Br. Med. J. 2, 9–11.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Skirrow, M.B. 1994. Diseases due to Campylobacter, Helicobacter and related bacteria. J. Comp. Pathol. 111, 113–149.PubMedCrossRefGoogle Scholar
  97. Skirrow, M.B., Jones, D.M., Sutcliffe, J.E., and Benjamin, J. 1993. Campylobacter bacteraemia in England and Wales, 1981–1991. Epidemiol. Infect. 110, 567–573.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Smith, J.L. 1995. Arthritis, Guillain-Barré syndrome, and other sequelae of Campylobacter jejuni enteritis. J. Food Prot. 58, 1153–1170.Google Scholar
  99. Smith, J.L. 2002. Campylobacter jejuni infection during pregnancy: long-term consequences of associated bacteremia, Guillain-Barré syndrome, and reactive arthritis. J. Food Prot. 65, 696–708.PubMedGoogle Scholar
  100. Socransky, S.S. and Haffajee, A.D. 2002. Dental biolfilm: difficult therapeutic targets. Periodontol 2000 28, 12–55.PubMedCrossRefGoogle Scholar
  101. Staff, M.C. 2015. Diseases and conditions inflammatory bowel disease (IBD). Available from http://www.mayoclinic.org/diseasesconditions/inflammatory-bowel-disease/basics/definition/con-20034908. Accessed May. 22, 2016.Google Scholar
  102. Steinkraus, G.E. and Wright, B.D. 1994. Septic abortion with intact fetal membranes caused by Campylobacter fetus subsp. fetus. J. Clin. Microbiol. 32, 1608–1609.PubMedPubMedCentralGoogle Scholar
  103. Szymanski, C.M., King, M., Haardt, M., and Armstrong, G.D. 1995. Campylobacter jejuni motility and invasion of Caco-2 cells. Infect. Immun. 63, 4295–4300.PubMedPubMedCentralGoogle Scholar
  104. Tanner, A.C.R., Badger, S., Lai, C.H., Listgarten, M.A., Visconti, R.A., and Socransky, S.S. 1981. Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., Eikenella corrodens from humans with periodontital disease. Int. J. Syst. Bacteriol. 31, 432–445.CrossRefGoogle Scholar
  105. Tauxe, R.V. 2002. Emerging foodborne pathogens. Int. J. Food Microbiol. 78, 31–41.PubMedCrossRefGoogle Scholar
  106. Uematsu, H., Nunez, P., Sato, N., Nakazawa, F., and Hoshino, E. 2011. Campylobacter rectus and Campylobacter gracilis isolated from human periodontal pockets. J. Oral Biosci. 53, 356–365.CrossRefGoogle Scholar
  107. Valenza, G., Frosch, M., and Abele-Horn, M. 2010. Antimicrobial susceptibility of clinical Campylobacter isolates collected data German university hospital during the period 2006–2008. Scand. J. Infect. Dis. 42, 57–60.PubMedCrossRefGoogle Scholar
  108. Vandamme, P., Daneshvar, M.I., Dewhirst, F.E., Paster, B.J., Kersters, K., Goossenes, H., and Moss, C.W. 1995. Chemotaxonomic analysis of Bacteroides gracilis and Bacteroides ureolyticus and reclassification of B. gracilis as Campylobacter gracilis comb. nov. Int. J. Syst. Microbiol. 45, 145–152.Google Scholar
  109. Vandamme, P., Falsen, E., Pot, B., Hoste, B., Kersters, K., and De Ley, J. 1989. Identification of EF group 22 campylobacters from gastroenteritis cases as Campylobacter concisus. J. Clin. Microbiol. 27, 1775–1781.PubMedPubMedCentralGoogle Scholar
  110. Vandenberg, O., Houf, K., Douat, N., Vlaes, L., Patricia, R., Butzler, J.P., and Dediste, A. 2006. Antimicrobial susceptibility of clinical isolates of non-jejuni/coli campylobacters and arcobacters from Belgium. J. Antimicrob. Chemother. 57, 908–913.PubMedCrossRefGoogle Scholar
  111. Van Etterijck, R., Breynaert, J., Revets, H., Devareker, T., Vanderplas, Y., Vandamme, P., and Lauwers, S. 1996. Isolation of Campylobacter concisus from feces of children with and without diarrhea. J. Clin. Microbiol. 34, 2304–2306.PubMedPubMedCentralGoogle Scholar
  112. Varga, J., Mézes, B., Fodor, L., and Hajtós, I. 1990. Serogroups of Campylobacter fetus and Campylobacter jejuni isolated in cases of ovine abortion. J. Vet. Med. Series B. 37, 148–152.CrossRefGoogle Scholar
  113. Vinzent, R., Dumas, J., and Card, N.P. 1947. Septicémie grave au cours de la grossesse due à un vibrion. Avortement consécutif. Bull. Acad. Natl. Med. 131, 90–92.Google Scholar
  114. Wassenaar, T.M., van der Zeijst, B.A.M., Ayling, R., and Newell, D.G. 1993. Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin a expression. J. Gen. Microbiol. 139, 1171–1175.PubMedCrossRefGoogle Scholar
  115. Weijtens, M.J.B.M., Bijker, P.G.H., Van der Plas, J., Urlings, H.A.P., and Biesheuvel, M.H. 1993. Prevalence of Campylobacter in pigs during fattening; an epidemiological study. Vet. Quart. 15, 138–143.CrossRefGoogle Scholar
  116. Whitehouse, C.A., Balbo, P.B., Pesci, E.C., Cottle, D.L., Mirabito, P.M., and Pickett, C.L. 1998. Campylobacter jejuni cytolethal distending toxin causes a G2-phase cell cycle block. Infect. Immun. 66, 1934–1940.PubMedPubMedCentralGoogle Scholar
  117. Yamasaki, S., Asakura, M., Tsukamoto, T., Faruque, S.M., Deb, R., and Ramamurthy, T. 2006. Cytolethal distending toxin (CDT): genetic diversity, structure and role in diarrheal disease. Toxin Rev. 25, 61–88.CrossRefGoogle Scholar
  118. Zhang, L. 2015. Oral Campylobacter species: Initiators of a subgroup of inflammatory bowel disease? World J. Gastroenterol. 21, 9239–9244.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zhang, L., Budiman, V., Day, A.S., Mitchell, H., Lemberg, D.A., Riordan, S.M., Grimm, M., Leach, S.T., and Ismail, Y. 2010. Isolation and detection of Campylobacter concisus from saliva of healthy individuals and patients with inflammatory bowel disease. J. Clin. Microbiol. 48, 2965–2967.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zhang, L., Man, S.M., Day, A.S., Leach, S.T., Lemberg, D.A., Dutt, S., Stormon, M., Otley, A., O’Loughlin, E.V., Magoffin, A., et al. 2009. Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn’s disease. J. Clin. Microbiol. 47, 453–455.PubMedCrossRefGoogle Scholar
  121. Zilbauer, M., Dorrell, N., Wren, B.W., and Bajaj-Elliott, M. 2008. Campylobacter jejuni mediated disease pathogenesis: an update. Trans. R. Soc. Trop. Med. Hyg. 120, 123–129.CrossRefGoogle Scholar
  122. Ziprin, R.L., Young, C.R., Stanker, L.H., Hume, M.E., and Konkel, M.E. 1999. The absence of cecal colonization of chicks by a mutant of Campylobacter jejuni not expressing bacterial fibronectinbinding protein. Avian. Dis. 43, 586–589.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Soomin Lee
    • 1
  • Jeeyeon Lee
    • 1
  • Jimyeong Ha
    • 1
  • Yukyung Choi
    • 1
  • Sejeong Kim
    • 1
  • Heeyoung Lee
    • 1
  • Yohan Yoon
    • 1
    Email author
  • Kyoung-Hee Choi
    • 2
    Email author
  1. 1.Department of Food and NutritionSookmyung Women’s UniversitySeoulRepublic of Korea
  2. 2.Department of Oral Microbiology, College of DentistryWonkwang UniversityIksan, ChonbukRepublic of Korea

Personalised recommendations