Advertisement

Journal of Microbiology

, Volume 54, Issue 9, pp 618–625 | Cite as

Application of high-resolution melting analysis for differentiation of spoilage yeasts

  • Mine Erdem
  • Zülal Kesmen
  • Esra Özbekar
  • Bülent Çetin
  • Hasan Yetim
Article

Abstract

A new method based on high resolution melting (HRM) analysis was developed for the differentiation and classification of the yeast species that cause food spoilage. A total 134 strains belonging to 21 different yeast species were examined to evaluate the discriminative power of HRM analysis. Two different highly variable DNA regions on the 26 rRNA gene were targeted to produce the HRM profiles of each strain. HRM-based grouping was compared and confirmed by (GTG)5 rep-PCR fingerprinting analysis. All of the yeast species belonging to the genera Pichia, Candida, Kazachstania, Kluyveromyces, Debaryomyces, Dekkera, Saccharomyces, Torulaspora, Ustilago, and Yarrowia, which were produced as species-specific HRM profiles, allowed discrimination at species and/or strain level. The HRM analysis of both target regions provided successful discrimination that correlated with rep-PCR fingerprinting analysis. Consequently, the HRM analysis has the potential for use in the rapid and accurate classification and typing of yeast species isolated from different foods to determine their sources and routes as well as to prevent contamination.

Keywords

High-resolution melting analysis yeast species melting curve 26S rRNA gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boundy-Mills, K. 2006. Methods for investigating yeast biodiversity. In Biodiversity and Ecophysiology of Yeasts. pp. 67–100. Springer Berlin Heidelberg.CrossRefGoogle Scholar
  2. Caruso, M., Capece, A., Salzano, G., and Romano, P. 2002. Typing of Saccharomyces cerevisiae and Kloeckera apiculata strains from Aglianico wine. Lett. Appl. Microbiol. 34, 323–328.CrossRefPubMedGoogle Scholar
  3. Casey, G.D. and Dobson, A.D. 2004. Potential of using real-time PCR-based detection of spoilage yeast in fruit juice-a preliminary study. Int. J. Food Microbiol. 91, 327–335.CrossRefPubMedGoogle Scholar
  4. Chen, J.H., Cheng, V.C., Chan, J.F., She, K.K., Yan, M.K., Yau, M.C., Kwan, G.S., Yam, W.C., and Yuen, K.Y. 2013. The use of highresolution melting analysis for rapid spa typing on methicillinresistant Staphylococcus aureus clinical isolates. J. Microbiol. Methods 92, 99–102.CrossRefPubMedGoogle Scholar
  5. Cocolin, L., Bisson, L.F., and Mills, D.A. 2000. Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol. Lett. 189, 81–87.CrossRefPubMedGoogle Scholar
  6. Couto, M.B., Eijsma, B., Hofstra, H., in’t Veld, J.H., and van der Vossen, J.M. 1996a. Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains. Appl. Environ. Microbiol. 62, 41–46.Google Scholar
  7. Couto, M.B., Hartog, B.J., in’t Veld, J.H., Hofstra, H., and van der Vossen, J.M. 1996b. Identification of spoilage yeasts in a foodproduction chain by microsatellite polymerase chain reaction fingerprinting. Food Microbiol. 13, 59–67.CrossRefGoogle Scholar
  8. Druml, B. and Cichna-Markl, M. 2014. High resolution melting (HRM) analysis of DNA–its role and potential in food analysis. Food Chem. 158, 245–254.CrossRefPubMedGoogle Scholar
  9. Esteve-Zarzoso, B., Belloch, C., Uruburu, F., and Querol, A. 1999. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bacteriol. 49, 329–337.CrossRefPubMedGoogle Scholar
  10. Fell, J.W. 1993. Rapid identification of yeast species using three primers in a polymerase chain reaction. Mol. Mar. Biol. Biotechnol. 2, 174–180.PubMedGoogle Scholar
  11. Fleet, G. 2006. The commercial and community significance of yeasts in food and beverage production. In Querol, A. and Fleet, G. (ed.), Yeasts in food and beverages, Springer Berlin Heidelberg.Google Scholar
  12. Fleet, G.H. 2011. Yeast spoilage of foods and beverages. In The yeasts, a taxonomic study, 1, 53–63.CrossRefGoogle Scholar
  13. Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., and Sarniguet, A. 2011. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev. 75, 583–609.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gevers, D., Huys, G., and Swings, J. 2001. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. Lett. 205, 31–36.CrossRefPubMedGoogle Scholar
  15. Granchi, L., Bosco, M., Messini, A., and Vincenzini, M. 1999. Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region. J. Appl. Microbiol. 87, 949–956.CrossRefPubMedGoogle Scholar
  16. Groenewald, M., Robert, V., and Smith, M.T. 2011. The value of the D1/D2 and internal transcribed spacers (ITS) domains for the identification of yeast species belonging to the genus Yamadazyma. Persoonia. 26, 40–46.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Guillamón, J.M., Sánchez, I., and Huerta, T. 1997. Rapid characterization of wild and collection strains of the genus Zygosaccharomyces according to mitochondrial DNA patterns. FEMS Microbiol. Lett. 147, 267–272.CrossRefPubMedGoogle Scholar
  18. Hjelmsø, M.H., Hansen, L.H., Bælum, J., Feld, L., Holben, W.E., and Jacobsen, C.S. 2014. High-resolution melt analysis for rapid comparison of bacterial community compositions. Appl. Environ. Microbiol. 80, 3568–3575.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Iacumin, L., Ginaldi, F., Manzano, M., Anastasi, V., Reale, A., Zotta, T., Rossi, F., Coppola, R. and Comi, G. 2015. High resolution melting analysis (HRM) as a new tool for the identification of species belonging to the Lactobacillus casei group and comparison with species-specific PCRs and multiplex PCR. Food Microbiol. 46, 357–367.CrossRefPubMedGoogle Scholar
  20. Juvonen, R., Koivula, T., and Haikara, A., 2008. Group-specific PCRRFLP and real-time PCR methods for detection and tentative discrimination of strictly anaerobic beer-spoilage bacteria of the class Clostridia. Int. J. Food Microbiol. 125, 162–169.CrossRefPubMedGoogle Scholar
  21. Kao, Y.T., Liu, Y.S., and Shyu, Y.T. 2007. Identification of Lactobacillus spp. in probiotic products by real-time PCR and melting curve analysis. Food Res. Int. 40, 71–79.CrossRefGoogle Scholar
  22. Kesmen, Z., Yarimcam, B., Aslan, H., Ozbekar, E., and Yetim, H. 2014. Application of different molecular techniques for characterization of catalase-positive cocci isolated from Sucuk. J. Food Sci. 79, M222–M229.CrossRefPubMedGoogle Scholar
  23. Kurtzman, C.P. 2015. Identification of food and beverage spoilage yeasts from DNA sequence analyses. Int. J. Food Microbiol. 213, 71–78CrossRefPubMedGoogle Scholar
  24. Kurtzman, C.P. and Fell, J.W. 1998. The yeasts, a taxonomic study. In The yeasts, a taxonomic study. Elsevier Science Publishers BV.Google Scholar
  25. Kurtzman, C.P. and Robnett, C.J. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek, 73, 331–371.CrossRefPubMedGoogle Scholar
  26. Kurtzman, C.P. and Robnett, C.J. 2003. Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res. 3, 417–432.CrossRefPubMedGoogle Scholar
  27. Lieckfeldt, E., Meyer, W., and Börner, T. 1993. Rapid identification and differentiation of yeasts by DNA and PCR fingerprinting. J. Basic Microbiol. 33, 413–425.CrossRefPubMedGoogle Scholar
  28. Makino, H., Fujimoto, J., and Watanabe, K. 2010. Development and evaluation of a real-time quantitative PCR assay for detection and enumeration of yeasts of public health interest in dairy products. Int. J. Food Microbiol. 140, 76–83.CrossRefPubMedGoogle Scholar
  29. Mannarelli, B.M. and Kurtzman, C.P. 1998. Rapid Identification of Candida albicans and other human pathogenic yeasts by using short oligonucleotides in a PCR. J. Clin. Microbiol. 36, 1634–1641.PubMedPubMedCentralGoogle Scholar
  30. Martorell, P., Fernández-Espinar, M.T., and Querol, A. 2005. Molecular monitoring of spoilage yeasts during the production of candied fruit nougats to determine food contamination sources. Int. J. Food Microbiol. 101, 293–302.CrossRefPubMedGoogle Scholar
  31. Orlić, S., Vojvoda, T., Babić, K.H., Arroyo-López, F.N., Jeromel, A., Kozina, B., and Comi, G. 2010. Diversity and oenological characterization of indigenous Saccharomyces cerevisiae associated with Žilavka grapes. World J. Microbiol. Biotechnol. 26, 1483–1489.CrossRefGoogle Scholar
  32. Pitt, J.I. and Hocking, A.D. 2009. Fungi and food spoilage (Vol. 519). New York: Springer.CrossRefGoogle Scholar
  33. Reed, G.H. and Wittwer, C.T. 2004. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin. Chem. 50, 1748–1754.CrossRefPubMedGoogle Scholar
  34. Reed, G.H., Kent, J.O., and Wittwer, C.T. 2007. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8, 597–608.CrossRefPubMedGoogle Scholar
  35. Sandhu, G.S., Kline, B.C., Stockman, L., and Roberts, G.D. 1995. Molecular probes for diagnosis of fungal infections. J. Clin. Microbiol. 33, 2913–2919.PubMedPubMedCentralGoogle Scholar
  36. Stratford, M. 2006. Food and beverage spoilage yeasts. In Querol, A. and Fleet, G. (ed.), Yeasts in food and beverages, Springer Berlin Heidelberg.Google Scholar
  37. Szén, O.P., Kiss, A., Naár, Z., and Pál, K. 2014. Evaluation of highresolution melting and other molecular methods in discrimination of Lactobacillus isolates. J. Appl. Microbiol. 117, 1113–1121.CrossRefPubMedGoogle Scholar
  38. Tournas, V.H. 2005. Moulds and yeasts in fresh and minimally processed vegetables, and sprouts. Int. J. Food Microbiol. 99, 71–77.CrossRefPubMedGoogle Scholar
  39. van der Vossen, J.M.B.M., Rahaoui, H., De Nijs, M.W.C.M., and Hartog, B.J. 2003. PCR methods for tracing and detection of yeasts in the food chain. In Boekhout, T. and Robert, V.(ed.), Yeast in FoodsGoogle Scholar
  40. van der Vossen, J.M. and Hofstra, H. 1996. DNA based typing, identification and detection systems for food spoilage microorganisms: development and implementation. Int. J. Food Microbiol. 33, 35–49.CrossRefPubMedGoogle Scholar
  41. Vauterin, L. and Vauterin, P. 1992. Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur Microbiol. 1, 37–41.Google Scholar
  42. Versalovic, J., Schneider, M., De Bruijn, F.J., and Lupski, J.R. 1994. Genomic fingerprinting of bacteria using repetitive sequencebased polymerase chain reaction. Method. Mol. Cell Biol. 5, 25–40Google Scholar
  43. Vezinhet, F., Blondin, B., and Hallet, J.N. 1990. Chromosomal DNA patterns and mitochondrial DNA polymorphism as tools for identification of enological strains of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 32, 568–571.CrossRefGoogle Scholar
  44. Watanabe, T., Murata, Y., Oka, S., and Iwahashi, H. 2004. A new approach to species determination for yeast strains: DNA microarray- based comparative genomic hybridization using a yeast DNA microarray with 6000 genes. Yeast, 21, 351–365.CrossRefPubMedGoogle Scholar
  45. White, H.E., Hall, V.J., and Cross, N.C. 2007. Methylation-sensitive high-resolution melting-curve analysis of the SNRPN gene as a diagnostic screen for Prader-Willi and Angelman syndromes. Clin. Chem. 53, 1960–1962.CrossRefPubMedGoogle Scholar
  46. Yetiman, A.E. and Kesmen, Z. 2015. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques. Int. J. Food Microbiol. 204, 9–16.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mine Erdem
    • 1
  • Zülal Kesmen
    • 1
  • Esra Özbekar
    • 1
  • Bülent Çetin
    • 2
  • Hasan Yetim
    • 1
  1. 1.Faculty of Engineering, Food Engineering DepartmentErciyes UniversityKayseriTurkey
  2. 2.Faculty of Agriculture, Food Engineering DepartmentAtaturk UniversityErzurumTurkey

Personalised recommendations