Journal of Microbiology

, Volume 54, Issue 5, pp 387–395 | Cite as

Novel nuclear targeting coiled-coil protein of Helicobacter pylori showing Ca2+-independent, Mg2+-dependent DNase I activity

  • Young Chul Kwon
  • Sinil Kim
  • Yong Seok Lee
  • Je Chul Lee
  • Myung-Je Cho
  • Woo-Kon Lee
  • Hyung-Lyun Kang
  • Jae-Young Song
  • Seung Chul Baik
  • Hyeon Su Ro
Microbial Physiology and Biochemistry
  • 74 Downloads

Abstract

HP0059, an uncharacterized gene of Helicobacter pylori, encodes a 284-aa-long protein containing a nuclear localization sequence (NLS) and multiple leucine-rich heptad repeats. Effects of HP0059 proteins in human stomach cells were assessed by incubation of recombinant HP0059 proteins with the AGS human gastric carcinoma cell line. Wild-type HP0059 proteins showed cytotoxicity in AGS cells in a concentration-dependent manner, whereas NLS mutant protein showed no effect, suggesting that the cytotoxicity is attributed to host nuclear localization. AGS cells transfected with pEGFP-HP0059 plasmid showed strong GFP signal merged to the chromosomal DNA region. The chromosome was fragmented into multiple distinct dots merged with the GFP signal after 12 h of incubation. The chromosome fragmentation was further explored by incubation of AGS chromosomal DNA with recombinant HP0059 proteins, which leaded to complete degradation of the chromosomal DNA. HP0059 protein also degraded circular plasmid DNA without consensus, being an indication of DNase I activity. The DNase was activated by MgCl2, but not by CaCl2. The activity was completely blocked by EDTA. The optimal pH and temperature for DNase activity were 7.0–8.0 and 55°C, respectively. These results indicate that HP0059 possesses a novel DNase I activity along with a role in the genomic instability of human gastric cells, which may result in the transformation of gastric cells.

Keywords

coiled-coil DNase I Helicobacter pylori HP0059 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apostolovic, B., Deacon, S.P., Duncan, R., and Klok, H.A. 2011. Cell uptake and trafficking behavior of non-covalent, coiled-coil based polymer–drug conjugates. Macromol. Rap. Commun. 32, 11–18.CrossRefGoogle Scholar
  2. Bae, M., Lim, J.W., and Kim, H. 2013. Oxidative DNA damage response in Helicobacter pylori-infected Mongolian Gerbils. J. Cancer Prev. 18, 271–275.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bitter, W., Houben, E.N., Bottai, D., Brodin, P., Brown, E.J., Cox, J.S., Derbyshire, K., Fortune, S.M., Gao, L.Y., Liu, J., et al. 2009. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog. 5, e1000507.CrossRefGoogle Scholar
  4. Brodin, P., Rosenkrands, I., Andersen, P., Cole, S.T., and Brosch, R. 2004. ESAT-6 proteins: protective antigens and virulence factors? Trend. Microbiol. 12, 500–508.CrossRefGoogle Scholar
  5. Brown, J.H., Kim, K.H., Jun, G., Greenfield, N.J., Dominguez, R., Volkmann, N., Hitchcock-DeGregori, S.E., and Cohen, C. 2001. Deciphering the design of the tropomyosin molecule. Proc. Natl. Acad. Sci. USA 98, 8496–8501.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Censini, S., Lange, C., Xiang, Z., Crabtree, J.E., Ghiara, P., Borodovsky, M., Rappuoli, R., and Covacci, A. 1996. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and diseaseassociated virulence factors. Proc. Natl. Acad. Sci. USA 93, 14648–14653.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cole, C., Barber, J.D., and Barton, G.J. 2008. The Jpred 3 secondary structure prediction server. Nucleic Acids Res. 36, W197–W201.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cornelis, G.R. and Wolf-Watz, H. 1997. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol. Microbiol. 23, 861–867.CrossRefPubMedGoogle Scholar
  9. Covacci, A., Censini, S., Bugnoli, M., Petracca, R., Burroni, D., Macchia, G., Massone, A., Papini, E., Xiang, Z., and Figura, N. 1993. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl. Acad. Sci. USA 90, 5791–5795.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cover, T.L. 1996. The vacuolating cytotoxin of Helicobacter pylori. Mol. Microbiol. 20, 241–246.CrossRefPubMedGoogle Scholar
  11. Cover, T.L., Krishna, U.S., Israel, D.A., and Peek, R.M. 2003. Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res. 63, 951–957.PubMedGoogle Scholar
  12. Delahay, R.M. and Frankel, G. 2002. Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Mol. Microbiol. 45, 905–916.CrossRefPubMedGoogle Scholar
  13. Dossumbekova, A., Prinz, C., Mages, J., Lang, R., Kusters, J.G., van Vliet, A.H.M., Reindl, W., Backert, S., Saur, D., Schmid, R.M., et al. 2006. Helicobacter pylori HopH (OipA) and bacterial pathogenicity: genetic and functional genomic analysis of hopH gene polymorphisms. J. Infect. Dis. 194, 1346–1355.CrossRefPubMedGoogle Scholar
  14. Galmiche, A., Rassow, J., Doye, A., Cagnol, S., Chambard, J.C., Contamin, S., de Thillot, V., Just, I., Ricci, V., Solcia, E., et al. 2000. The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J. 19, 6361–6370.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Garufi, G., Butler, E., and Missiakas, D. 2008. ESAT-6-like protein secretion in Bacillus anthracis. J. Bacteriol. 190, 7004–7011.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gueroult, M., Picot, D., Abi,-Ghanem, J., Hartmann, B., and Baaden, M. 2010. How cations can assist DNase I in DNA binding and hydrolysis. PLoS Comput. Biol. 6, e1001000.CrossRefGoogle Scholar
  17. Haraga, A. and Miller, S.I. 2006. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell. Microbiol. 8, 837–846.CrossRefPubMedGoogle Scholar
  18. Hatakeyama, M. and Higashi, H. 2005. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci. 96, 835–843.CrossRefPubMedGoogle Scholar
  19. Hirano, T., Kobayashi, R., and Hirano, M. 1997. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89, 511–521.CrossRefPubMedGoogle Scholar
  20. Hirano, T. 2002. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Gene Dev. 16, 399–414.CrossRefPubMedGoogle Scholar
  21. Johnson, W.M. and Lior, H. 1998. A new heat-labile cytolethal distending toxin (CLDT) produced by Campylobacter spp. Microb. Pathog. 4, 115–126.CrossRefGoogle Scholar
  22. Lara-Tejero, M. and Galán, J.E. 2000. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 290, 354–357.CrossRefPubMedGoogle Scholar
  23. Lee, J.H., Jun, S.H., Baik, S.C., Kim, D.R., Park, J.Y., Lee, Y.S., Choi, C.H., and Lee, J.C. 2012. Prediction and screening of nuclear targeting proteins with nuclear localization signals in Helicobacter pylori. J. Microbiol. Methods 91, 490–496.CrossRefPubMedGoogle Scholar
  24. Lorenzo, H.K., Susin, S.A., Penninger, J., and Kroemer, G. 1999. Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ. 6, 516–524.CrossRefPubMedGoogle Scholar
  25. Michaelis, C., Ciosk, R., and Nasmyth, K. 1997. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45.CrossRefPubMedGoogle Scholar
  26. Negrini, R., Savio, A., Poiesi, C., Appelmelk, B.J., Buffoli, F., Paterlini, A., Cesari, P., Graffeo, M., Vaira, D., and Franzin, G. 1996. Antigenic mimicry between Helicobacter pylori and gastric mucosa in the pathogenesis of body atrophic gastritis. Gastroenterology 111, 655–665.CrossRefPubMedGoogle Scholar
  27. Nomura, A., Stemmermann, G.N., Chyou, P.H., Kato, I., Perez-Perez, G.I., and Blaser, M.J. 1991. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N. Engl. J. Med. 325, 1132–1136.CrossRefPubMedGoogle Scholar
  28. Okuda, J., Toyotome, T., Kataoka, N., Ohno, M., Abe, H., Shimura, Y., Seyedarabi, A., Pickersgill, R., and Sasakawa, C. 2005. Shigella effector IpaH9.8 binds to a splicing factor U2AF 35 to modulate host immune responses. Biochem. Biophys. Res. Commun. 333, 531–539.CrossRefPubMedGoogle Scholar
  29. Parsonnet, J., Friedman, G.D., Vandersteen, D.P., Chang, Y., Vogelman, J.H., Orentreich, N., and Sibley, R.K. 1991. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325, 1127–1131.CrossRefPubMedGoogle Scholar
  30. Pickett, C.L., Pesci, E.C., Cottle, D.L., Russell, G., Erdem, A.N., and Zeytin, H. 1996. Prevalence of cytolethal distending toxin production in Campylobacter jejuni and relatedness of Campylobacter sp. cdtB gene. Infect. Immun. 64, 2070–2078.PubMedPubMedCentralGoogle Scholar
  31. Riddick, G. and Macara, I.G. 2005. A systems analysis of importin-α–β mediated nuclear protein import. J. Cell Biol. 168, 1027–1038.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Salvesen, G.S. and Dixit, V.M. 1999. Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA 96, 10964–10967.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sharma, C.M., Hoffmann, S., Darfeuille, F., Reignier, J., Findeiß, S., Sittka, A., Chabas, S., Reiche, K., Hackermuller, J., Reinhardt, R., et al. 2010. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250–255.CrossRefPubMedGoogle Scholar
  34. Thornberry, N.A. and Lazebnik, Y. 1998. Caspases: enemies within. Science 281, 1312–1316.CrossRefPubMedGoogle Scholar
  35. Toller, I.M., Neelsen, K.J., Steger, M., Hartung, M.L., Hottiger, M.O., Stucki, M., Kalali, B., Gerhard, M., Sartori, A.A., Lopes, M., et al. 2011. Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc. Natl. Acad. Sci. USA 108, 14944–14949.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Trigg, J., Gutwin, K., Keating, A.E., and Berger, B. 2011. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone. PLoS One 6, e23519.CrossRefGoogle Scholar
  37. Tsuji, S., Kawai, N., Tsujii, M., Kawano, S., and Hori, M. 2003. Review article: inflammation-related promotion of gastrointestinal carcinogenesis-a perigenetic pathway. Aliment Pharmacol. Ther. 18(S1), 82–89.CrossRefPubMedGoogle Scholar
  38. Vincent, T.L., Green, P.J., and Woolfson, D.N. 2013. LOGICOILmulti-state prediction of coiled-coil oligomeric state. Bioinformatics 29, 69–76.CrossRefPubMedGoogle Scholar
  39. Warren, J.R. and Marshall, B. 1983. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 321, 1273–1275.CrossRefGoogle Scholar
  40. Wroblewski, L.E., Peek, R.M., and Wilson, K.T. 2010. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clinic. Microbiol. Rev. 23, 713–739.CrossRefGoogle Scholar
  41. Yachdav, G., Kloppmann, E., Kajan, L., Hecht, M., Goldberg, T., Hamp, T., Hönigschmid, P., Schafferhans, A., Roos, M., Bernhofer, M., et al. 2014. PredictProtein-an open resource for online prediction of protein structural and functional features. Nucleic Acids Res. 42, W337–W343.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yu, H.J., Lim, D., and Lee, H.S. 2003. Characterization of a novel single-stranded RNA mycovirus in Pleurotus ostreatus. Virology 314, 9–15.CrossRefPubMedGoogle Scholar
  43. Zhang, D., Iyer, L.M., and Aravind, L. 2011. A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems. Nucleic Acids Res. 39, 4532–4552.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Young Chul Kwon
    • 1
  • Sinil Kim
    • 2
  • Yong Seok Lee
    • 3
  • Je Chul Lee
    • 4
  • Myung-Je Cho
    • 1
  • Woo-Kon Lee
    • 1
  • Hyung-Lyun Kang
    • 1
  • Jae-Young Song
    • 1
  • Seung Chul Baik
    • 1
  • Hyeon Su Ro
    • 2
  1. 1.Department of MicrobiologyGyeongsang National University School of MedicineJinjuRepublic of Korea
  2. 2.Division of Life Science and Research Institute of Life SciencesGyeongsang National UniversityJinjuRepublic of Korea
  3. 3.Department of Life Science and BiotechnologySoonchunhyang UniversityAsanRepublic of Korea
  4. 4.Department of MicrobiologyKyungpook National University School of MedicineDaeguRepublic of Korea

Personalised recommendations