Advertisement

Journal of Microbiology

, Volume 54, Issue 1, pp 23–30 | Cite as

Synergistic growth in bacteria depends on substrate complexity

  • Yi-Jie Deng
  • Shiao Y. WangEmail author
Microbial Ecology and Environmental Microbiology

Abstract

Both positive and negative interactions among bacteria take place in the environment. We hypothesize that the complexity of the substrate affects the way bacteria interact with greater cooperation in the presence of recalcitrant substrate. We isolated lignocellulolytic bacteria from salt marsh detritus and compared the growth, metabolic activity and enzyme production of pure cultures to those of three-species mixed cultures in lignocellulose and glucose media. Synergistic growth was common in lignocellulose medium containing carboxyl methyl cellulose, xylan and lignin but absent in glucose medium. Bacterial synergism promoted metabolic activity in synergistic mixed cultures but not the maximal growth rate (μ). Bacterial synergism also promoted the production of β-1,4-glucosidase but not the production of cellobiohydrolase or β-1,4-xylosidase. Our results suggest that the chemical complexity of the substrate affects the way bacteria interact. While a complex substrate such as lignocellulose promotes positive interactions and synergistic growth, a labile substrate such as glucose promotes negative interactions and competition. Synergistic interactions among indigenous bacteria are suggested to be important in promoting lignocellulose degradation in the environment.

Keywords

bacterial synergism lignocellulose degradation bacterial activity enzyme production microbial interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breugelmans, P., Barken, K.B., Tolker-Nielsen, T., Hofkens, J., Dejonghe, W., and Springael, D. 2008. Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron. FEMS Microbiol. Ecol. 64. 271–282.PubMedCrossRefGoogle Scholar
  2. Burmølle, M., Webb, J.S., Rao, D., Hansen, L.H., Sørensen, S.J., and Kjelleberg, S. 2006. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol. 72, 3916–3923.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ciric, L., Philp, J.C., and Whiteley, A.S. 2010. Hydrocarbon utilization within a diesel-degrading bacterial consortium. FEMS Microbiol. Lett. 303. 116–122.PubMedCrossRefGoogle Scholar
  4. D’Costa, V.M., Griffiths, E., and Wright, G.D. 2007. Expanding the soil antibiotic resistome: exploring environmental diversity. Curr. Opin. Microbiol. 10. 481–489.PubMedCrossRefGoogle Scholar
  5. Da Silva, W.J., Seneviratne, J., Parahitiyawa, N., Rosa, E.A., Samaranayake, L.P., and Del Bel Cury, A.A. 2008. Improvement of XTT assay performance for studies involving Candida albicans biofilms. Braz. Dent. J. 19, 364–369.PubMedGoogle Scholar
  6. Elias, S. and Banin, E. 2012. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol. Rev. 36, 990–1004.PubMedCrossRefGoogle Scholar
  7. Flint, H.J., Duncan, S.H., Scott, K.P., and Louis, P. 2007. Interactions and competition within the microbial community of the human colon: links between diet and health. Environ. Microbiol. 9, 1101–1111.PubMedCrossRefGoogle Scholar
  8. Foster, K.R. and Bell, T. 2012. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850.PubMedCrossRefGoogle Scholar
  9. Freilich, S., Zarecki, R., Eilam, O., Segal, E.S., Henry, C.S., Kupiec, M., Gophna, U., Sharan, R., and Ruppin, E. 2011. Competitive and cooperative metabolic interactions in bacterial communities. Nat. Commun. 2, 589.PubMedCrossRefGoogle Scholar
  10. Gabrielson, J., Hart, M., Jarelov, A., Kuhn, I., McKenzie, D., and Mollby, R. 2002. Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J. Microbiol. Methods 50, 63–73.PubMedCrossRefGoogle Scholar
  11. Grossart, H.P., Schlingloff, A., Bernhard, M., Simon, M., and Brinkhoff, T. 2004. Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiol. Ecol. 47, 387–396.PubMedCrossRefGoogle Scholar
  12. Guevara, C. and Zambrano, M.M. 2006. Sugarcane cellulose utilization by a defined microbial consortium. FEMS Microbiol. Lett. 255, 52–58.PubMedCrossRefGoogle Scholar
  13. Hansen, S.K., Haagensen, J.A.J., Gjermansen, M., Jørgensen, T.M., Tolker-Nielsen, T., and Molin, S. 2007. Characterization of a Pseudomonas putida rough variant evolved in a mixed-species biofilm with Acinetobacter sp. strain C6. J. Bacteriol. 189, 4932–4943.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Haruta, S., Cui, Z., Huang, Z., Li, M., Ishii, M., and Igarashi, Y. 2002. Construction of a stable microbial community with high cellulose-degradation ability. Appl. Microbiol. Biotechnol. 59, 529–534.PubMedCrossRefGoogle Scholar
  15. Hibbing, M.E., Fuqua, C., Parsek, M.R., and Peterson, S.B. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hoppe, H. 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Prog. Ser. 11. 299–308.CrossRefGoogle Scholar
  17. Jiménez, D., Korenblum, E., and van Elsas, J. 2014. Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Appl. Microbiol. Biotechnol. 98, 2789–2803.PubMedCrossRefGoogle Scholar
  18. Kostylev, M. and Wilson, D. 2012. Synergistic interactions in cellulose hydrolysis. Biofuels 3, 61–70.CrossRefGoogle Scholar
  19. Lo, Y.C., Saratale, G.D., Chen, W.M., Bai, M.D., and Chang, J.S. 2009. Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzym. Microb. Technol. 44, 417–425.CrossRefGoogle Scholar
  20. Long, R.A. and Azam, F. 2001. Antagonistic Interactions among Marine Pelagic Bacteria. Appl. Environ. Microbiol. 67, 4975–4983.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Marx, M.C., Wood, M., and Jarvis, S.C. 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640.CrossRefGoogle Scholar
  23. Newman, D.K. and Banfield, J.F. 2002. Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science 296, 1071–1077.PubMedCrossRefGoogle Scholar
  24. Nielsen, A.T., Tolker-Nielsen, T., Barken, K.B., and Molin, S. 2000. Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ. Microbiol. 2, 59–68.PubMedCrossRefGoogle Scholar
  25. Perez, J., Munoz-Dorado, J., de la Rubia, T., and Martinez, J. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5, 53–63.PubMedCrossRefGoogle Scholar
  26. Rypien, K.L., Ward, J.R., and Azam, F. 2010. Antagonistic interactions among coral-associated bacteria. Environ. Microbiol. 12, 28–39.PubMedCrossRefGoogle Scholar
  27. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  28. Saiya-Cork, K.R., Sinsabaugh, R.L., and Zak, D.R. 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315.CrossRefGoogle Scholar
  29. Sinsabaugh, R.L., Findlay, S., Franchini, P., and Fischer, D. 1997. Enzymatic analysis of riverine bacterioplankton production. Limnol. Oceanogr. 42, 29–38.CrossRefGoogle Scholar
  30. Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., Ahmed, B., Allison, S.D., Crenshaw, C., Contosta, A.R., Cusack, D., Frey, S., Gallo, M.E., et al. 2008. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264.PubMedGoogle Scholar
  31. Sun, Y. and Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11.PubMedCrossRefGoogle Scholar
  32. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24. 1596–1599.PubMedCrossRefGoogle Scholar
  33. Van Dyk, J.S. and Pletschke, B.I. 2012. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30, 1458–1480.PubMedCrossRefGoogle Scholar
  34. Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. 2007. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 173, 697–703.PubMedPubMedCentralGoogle Scholar
  36. Wintermute, E.H. and Silver, P.A. 2010. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Wongwilaiwalin, S., Rattanachomsri, U., Laothanachareon, T., Eurwilaichitr, L., Igarashi, Y., and Champreda, V. 2010. Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb. Technol. 47, 283–290.CrossRefGoogle Scholar
  38. Zuroff, T.R. and Curtis, W.R. 2012. Developing symbiotic consortia for lignocellulosic biofuel production. Appl. Microbiol. Biotechnol. 93, 1423–1435.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesThe University of Southern MississippiHattiesburgUSA

Personalised recommendations