Journal of Microbiology

, Volume 53, Issue 12, pp 805–811 | Cite as

Histone deacetylase-mediated morphological transition in Candida albicans

  • Jueun Kim
  • Ji-Eun Lee
  • Jung-Shin Lee


Candida albicans is the most common opportunistic fungal pathogen, which switches its morphology from single-cell yeast to filament through the various signaling pathways responding to diverse environmental cues. Various transcriptional factors such as Nrg1, Efg1, Brg1, Ssn6, and Tup1 are the key components of these signaling pathways. Since C. albicans can regulate its transcriptional gene expressions using common eukaryotic regulatory systems, its morphological transition by these signaling pathways could be linked to the epigenetic regulation by chromatin structure modifiers. Histone proteins, which are critical components of eukaryotic chromatin structure, can regulate the eukaryotic chromatin structure through their own modifications such as acetylation, methylation, phosphorylation and ubiquitylation. Recent studies revealed that various histone modifications, especially histone acetylation and deacetylation, participate in morphological transition of C. albicans collaborating with well-known transcription factors in the signaling pathways. Here, we review recent studies about chromatin-mediated morphological transition of C. albicans focusing on the interaction between transcription factors in the signaling pathways and histone deacetylases.


Candida albicans morphological transition histone deacetylases (HDACs) transcription factor chromatin structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alejandro-Osorio, A., Huebert, D.J., Porcaro, D.T., Sonntag, M.E., Nillasithanukroh, S., Will, J.L., and Gasch, A.P. 2009. The histone deacetylase Rpd3p is required for transient changes in genomic expression in response to stress. Genome Biol. 10, R57.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Banerjee, M., Thompson, D.S., Lazzell, A., Carlisle, P.L., Pierce, C., Monteagudo, C., Lo´pez-Ribot, J.L., and Kadosh, D. 2008. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol. Biol. Cell 19, 1354–1365.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Berger, S.L. 2007. The complex language of chromatin regulation during transcription. Nature 447, 407–412.CrossRefPubMedGoogle Scholar
  4. Braun, B.R. and Johnson, A.D. 2000. TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155, 57–67.PubMedCentralPubMedGoogle Scholar
  5. Buffo, J., Herman, M.A., and Soll, D.R. 1984. A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia 85, 21–30.CrossRefPubMedGoogle Scholar
  6. Bulger, M. 2005. Hyperacetylated chromatin domains: Lessons from heterochromatin. J. Biol. Chem. 280, 21689–21692.CrossRefPubMedGoogle Scholar
  7. Calderone, R.A. and Fonzi, W.A. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9, 327–335.CrossRefPubMedGoogle Scholar
  8. Carrozza, M.J., Li, B., Florens, L., Suganuma, T., Swanson, S.K., Lee, K.K., Shia, W., Anderson, S., Yates, J., Washburn, M.P., et al. 2005. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592.CrossRefPubMedGoogle Scholar
  9. Cress, W.D. and Seto, E. 2000. Histone deacetylases, transcriptional control, and cancer. J. Cell. Physiol. 184, 1–16.CrossRefPubMedGoogle Scholar
  10. de Ruijter, A.J.M., van Gennip, A.H., Caron, H.N., Kemp, S., and van Kuilenburg, A.B.P. 2003. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J. 370, 737–749.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Finnin, M.S., Donigian, J.R., Cohen, A., Richon, V.M., Rifkind, R.A., Marks, P.A., Breslow, R., and Pavletich, N.P. 1999. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193.CrossRefPubMedGoogle Scholar
  12. García-Sánchez, S., Mavor, A.L., Russell, C.L., Argimon, S., Dennison, P., Enjalbert, B., and Brown, A.J.P. 2005. Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Mol. Biol. Cell 16, 2913–2925.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Hnisz, D., Bardet, A.F., Nobile, C.J., Petryshyn, A., Glaser, W., Schöck, U., Stark, A., and Kuchler, K. 2012. A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet. 8, 1–13.CrossRefGoogle Scholar
  14. Hnisz, D., Majer, O., Frohner, I.E., Komnenovic, V., and Kuchler, K. 2010. The Set3/Hos2 histone deacetylase complex attenuates cAMP/PKA signaling to regulate morphogenesis and virulence of Candida albicans. PLoS Pathog. 6, 1–18.CrossRefGoogle Scholar
  15. Hnisz, D., Schwarzmüller, T., and Kuchler, K. 2009. Transcriptional loops meet chromatin: A dual-layer network controls whiteopaque switching in Candida albicans. Mol. Microbiol. 74, 1–15.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Hwang, C., Oh, J., Huh, W., Yim, H., and Kang, S. 2003. Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Mol. Microbiol. 47, 1029–1043.CrossRefPubMedGoogle Scholar
  17. Kadosh, D. and Struhl, K. 1998. Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev. 12, 797–805.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Keogh, M., Kurdistani, S.K., Morris, S.A., Ahn, S.H., Podolny, V., Collins, S.R., Schuldiner, M., Chin, K., Punna, T., Thompson, N.J., et al. 2005. Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123, 593–605.CrossRefPubMedGoogle Scholar
  19. Kim, T., Xu, Z., Clauder-Münster, S., Steinmetz, L.M., and Buratowski, S. 2012. Set3 HDAC mediates effects of overlapping noncoding transcription on gene induction kinetics. Cell 150, 1158–1169.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Klar, A.J.S., Srikantha, T., and Soll, D.R. 2001. A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen candida albicans. Genetics 158, 919–924.PubMedCentralPubMedGoogle Scholar
  21. Kornberg, R.D. and Lorch, Y. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294.CrossRefPubMedGoogle Scholar
  22. Kumamoto, C.A. and Vinces, M.D. 2005. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell. Microbiol. 7, 1546–1554.CrossRefPubMedGoogle Scholar
  23. Lee, K.L., Buckley, H.R., and Campbell, C.C. 1975. An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13, 148–153.CrossRefPubMedGoogle Scholar
  24. Lee, J., Oh, J., Ku, M., Kim, J., Lee, J., and Kang, S. 2015. Ssn6 has dual roles in Candida albicans filament development through the interaction with Rpd31. FEBS Lett. 589, 513–520.CrossRefPubMedGoogle Scholar
  25. Leng, P., Sudbery, P.E., and Brown, A.J.P. 2000. Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans. Mol. Microbiol. 35, 1264–1275.CrossRefPubMedGoogle Scholar
  26. Li, X., Cai, Q., Mei, H., Zhou, X., Shen, Y., Li, D., and Liu, W. 2015. The Rpd3/Hda1 family of histone deacetylases regulates azole resistance in Candida albicans. J. Antimicrob. Chemother. 70, 1993–2003.CrossRefPubMedGoogle Scholar
  27. Lim, C.S.Y., Rosli, R., Seow, H.F. and Chong, P.P. 2012. Candida and invasive candidiasis: Back to basics. Eur. J. Clin. Microbiol. Infect. Dis. 31, 21–31.CrossRefPubMedGoogle Scholar
  28. Liu, H., Kohler, J., and Fink, G.R. 1994. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 1723–1726.CrossRefPubMedGoogle Scholar
  29. Lu, Y., Su, C., and Liu, H. 2012. A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. PLoS Pathog. 8, 1–12.Google Scholar
  30. Lu, Y., Su, C., Mao, X., Raniga, P.P., Liu, H., and Chen, J. 2008. Efg1-mediated recruitment of NuA4 to promoters is required for hypha-specific swi/snf binding and activation in Candida albicans. Mol. Biol. Cell 19, 4260–4272.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Lu, Y., Su, C., Wang, A., and Liu, H. 2011. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol. 9, 1–17.CrossRefGoogle Scholar
  32. Nobile, C.J., Fox, E.P., Hartooni, N., Mitchell, K.F., Hnisz, D., Andes, D.R., Kuchler, K., and Johnson, A.D. 2014. A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans. mBio 5, e01201–14.CrossRefGoogle Scholar
  33. Pérez-Martín, J., Uría, J.A., and Johnson, A.D. 1999. Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J. 18, 2580–2592.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Petty, E. and Pillus, L. 2013. Balancing chromatin remodeling and histone modifications in transcription. Trends Genet. 29, 621–629.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Pijnappel, W.W.M.P., Schaft, D., Roguev, A., Shevchenko, A., Tekotte, H., Wilm, M., Rigaut, G., Séraphin, B., Aasland, R., and Stewart, A.F. 2001. The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev. 15, 2991–3004.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Raman, S.B., Hong Nguyen, M., Zhang, Z., Cheng, S., Hong, Y.J., Weisner, N., Iczkowski, K., and Clancy, C.J. 2006. Candida albicans SET1 encodes a histone 3 lysine 4 methyltransferase that contributes to the pathogenesis of invasive candidiasis. Mol. Microbiol. 60, 697–709.CrossRefPubMedGoogle Scholar
  37. Shepherd, M.G., Poulter, R.T.M., and Sullivan, P.A. 1985. Candida albicans: Biology, genetics, and pathogenicity. Annu. Rev. Microbiol. 39, 579–614.CrossRefPubMedGoogle Scholar
  38. Srikantha, T., Tsai, L., Daniels, K., Klar, A.J.S., and Soll, D.R. 2001. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J. Bacteriol. 183, 4614–4625.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Stevenson, J.S. and Liu, H. 2011. Regulation of white and opaque cell-type formation in Candida albicans by Rtt109 and Hst3. Mol. Microbiol. 81, 1078–1091.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Stoldt, V.R., Sonneborn, A., Leuker, C.E., and Ernst, J.F. 1997. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 16, 1982–1991.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Sudbery, P.E. 2011. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9, 737–748.CrossRefPubMedGoogle Scholar
  42. Sudbery, P., Gow, N., and Berman, J. 2004. The distinct morphogenic states of Candida albicans. Trends Microbiol. 12, 317–324.CrossRefPubMedGoogle Scholar
  43. Taschdjian, C.L., Burchall, J.J., and Kozinn, P.J. 1960. Rapid identification of Candida albicans by filamentation on serum and serum substitutes. AMA J. Dis. Child. 99, 212–215.PubMedGoogle Scholar
  44. Wang, X. and Hayes, J.J. 2008. Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol. Cell. Biol. 28, 227–236.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Wurtele, H., Tsao, S., Lépine, G., Mullick, A., Tremblay, J., Drogaris, P., Lee, E., Thibault, P., Verreault, A., and Raymond, M. 2010. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat. Med. 16, 774–780.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Yang, X. and Grégoire, S. 2005. Class IIhistone deacetylases: From sequence to function, regulation, and clinical implication. Mol. Cell. Biol. 25, 2873–2884.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Yang, X. and Seto, E. 2008. The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9, 206–218.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Yeheskely-Hayon, D., Kotler, A., Stark, M., Hashimshony, T., Sagee, S., and Kassir, Y. 2013. The roles of the catalytic and noncatalytic activities of Rpd3L and Rpd3S in the regulation of gene transcription in yeast. PLoS One 8, e85088.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & BiotechnologyKangwon National UniversityChuncheonRepublic of Korea

Personalised recommendations