Advertisement

Journal of Microbiology

, Volume 53, Issue 9, pp 579–587 | Cite as

The cAMP/protein kinase A signaling pathway in pathogenic basidiomycete fungi: Connections with iron homeostasis

  • Jaehyuk Choi
  • Won Hee Jung
  • James W. KronstadEmail author
Minireview

Abstract

A number of pathogenic species of basidiomycete fungi are either life-threatening pathogens of humans or major economic pests for crop production. Sensing the host is a key aspect of pathogen proliferation during disease, and signal transduction pathways are critically important for detecting environmental conditions and facilitating adaptation. This review focuses on the contributions of the cAMP/protein kinase A (PKA) signaling pathway in Cryptococcus neoformans, a species that causes meningitis in humans, and Ustilago maydis, a model phytopathogen that causes a smut disease on maize. Environmental sensing by the cAMP/PKA pathway regulates the production of key virulence traits in C. neoformans including the polysaccharide capsule and melanin. For U. maydis, the pathway controls the dimorphic transition from budding growth to the filamentous cell type required for proliferation in plant tissue. We discuss recent advances in identifying new components of the cAMP/PKA pathway in these pathogens and highlight an emerging theme that pathway signaling influences iron acquisition.

Keywords

cAMP/PKA pathway pathogenesis iron homeostasis pH signaling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D.R., Ron, D., and Kiely, P.A. 2011. RACK1, a multifaceted scaffolding protein: Structure and function. Cell Commun. Signal. 9, 22.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Alspaugh, J.A., Cavallo, L.M., Perfect, J.R., and Heitman, J. 2000. RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol. Microbiol. 36, 352–365.CrossRefPubMedGoogle Scholar
  3. Alspaugh, J.A., Perfect, J.R., and Heitman, J. 1997. Cryptococcus neoformans mating and virulence are regulated by the G-protein a subunit GPA1 and cAMP. Genes Dev. 11, 3206–3217.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Alspaugh, J.A., Pukkila-Worley, R., Harashima, T., Cavallo, L.M., Funnell, D., Cox, G.M., Perfect, J.R., Kronstad, J.W., and Heitman, J. 2002. Adenylyl cyclase functions downstream of the Gα protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot. Cell. 1, 75–84.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Andrews, D.L., Egan, J.D., Mayorga, M.E., and Gold, S.E. 2000. The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth. Mol. Plant- Microbe Interact. 13, 781–786.CrossRefPubMedGoogle Scholar
  6. Antonio, C.J., Lucila, O., Miriam, T., Scott, G., and José, R. 2010. Functional analysis of the pH responsive pathway Pal/Rim in the phytopathogenic basidiomycete Ustilago maydis. Fungal Genet. Biol. 47, 446–457.CrossRefGoogle Scholar
  7. Arechiga-Carvajal, E.T. and Ruiz-Herrera, J. 2005. The RIM101/pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena. Eukaryot. Cell. 4, 999–1008.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Banuett, F. 1995. Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu. Rev. Genet. 29, 179–208.CrossRefPubMedGoogle Scholar
  9. Banuett, F. and Herskowitz, I. 1994. Identification of Fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes Dev. 8, 1367–1378.CrossRefPubMedGoogle Scholar
  10. Banuett, F. and Herskowitz, I. 1996. Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122, 2965–2976.PubMedGoogle Scholar
  11. Bölker, M., Genin, S., Lehmler, C., and Kahmann, R. 1995. Genetic regulation of mating and dimorphism in Ustilago maydis. Can. J. Bot. 73, 320–325.CrossRefGoogle Scholar
  12. Bölker, M., Urban, M., and Kahmann, R. 1992. The a mating type locus of U. maydis specifies cell signaling components. Cell. 68, 441–450.CrossRefPubMedGoogle Scholar
  13. Brefort, T., Muller, P., and Kahmann, R. 2005. The high-mobilitygroup domain transcription factor Rop1 is a direct regulator of prf1 in Ustilago maydis. Eukaryot. Cell. 4, 379–391.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Cadieux, B., Lian, T., Hu, G., Wang, J., Biondo, C., Teti, G., Liu, V., Murphy, M.E., Creagh, A.L., and Kronstad, J.W. 2013. The Mannoprotein Cig1 supports iron acquisition from heme and virulence in the pathogenic fungus Cryptococcus neoformans. J. Infect. Dis. 207, 1339–1347.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Choi, Y.H., Ngamskulrungroj, P., Varma, A., Sionov, E., Hwang, S.M., Carriconde, F., Meyer, W., Litvintseva, A.P., Lee, W.G., and Shin, J.H. 2010. Prevalence of the VNIc genotype of Cryptococcus neoformans in non-HIV-associated cryptococcosis in the Republic of Korea. FEMS Yeast Res. 10, 769–778.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Choi, J., Vogl, A.W., and Kronstad, J.W. 2012. Regulated expression of cyclic AMP-dependent protein kinase A reveals an influence on cell size and the secretion of virulence factors in Cryptococcus neoformans. Mol. Microbiol. 85, 700–715.CrossRefPubMedGoogle Scholar
  17. Christensen, J.J. 1963. Corn smut caused by Ustilago maydis, pp. 1–52. American Phytopathological Society.Google Scholar
  18. Coelho, C., Bocca, A.L., and Casadevall, A. 2014. The tools for virulence of Cryptococcus neoformans. Adv. Appl. Microbiol. 87, 1–41.CrossRefPubMedGoogle Scholar
  19. Colombo, S., Ma, P., Cauwenberg, L., Winderickx, J., Crauwels, M., Teunissen, A., Nauwelaers, D., de Winde, J.H., Gorwa, M., and Colavizza, D. 1998. Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J. 17, 3326–3341.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Coyle, S.M., Gilbert, W.V., and Doudna, J.A. 2009. Direct link between RACK1 function and localization at the ribosome in vivo. Mol. Cell. Biol. 29, 1626–1634.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Cramer, K.L., Gerrald, Q.D., Nichols, C.B., Price, M.S., and Alspaugh, J.A. 2006. Transcription factor Nrg1 mediates capsule formation, stress response, and pathogenesis in Cryptococcus neoformans. Eukaryot. Cell. 5, 1147–1156.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Donlin, M.J., Upadhya, R., Gerik, K.J., Lam, W., Van Arendonk, L.G., Specht, C.A., Sharma, N.K., and Lodge, J.K. 2014. Cross talk between the cell wall integrity and cyclic AMP/protein kinase A pathways in Cryptococcus neoformans. MBio 5, e01573.PubMedCentralCrossRefPubMedGoogle Scholar
  23. D’Souza, C.A., Alspaugh, J.A., Yue, C., Harashima, T., Cox, G.M., Perfect, J.R., and Heitman, J. 2001. Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol. Cell. Biol. 21, 3179–3191.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Eichhorn, H., Lessing, F., Winterberg, B., Schirawski, J., Kamper, J., Muller, P., and Kahmann, R. 2006. A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. Plant Cell. 18, 3332–3345.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Ero, R., Dimitrova, V.T., Chen, Y., Bu, W., Feng, S., Liu, T., Wang, P., Xue, C., Tan, S.M., and Gao, Y. 2015. Crystal structure of Gib2, a signal-transducing protein scaffold associated with ribosomes in Cryptococcus neoformans. Sci. Rep. 5, 8688.CrossRefPubMedGoogle Scholar
  26. Franco-Frias, E., Ruiz-Herrera, J., and Arechiga-Carvajal, E.T. 2014. Transcriptomic analysis of the role of Rim101/PacC in the adaptation of Ustilago maydis to an alkaline environment. Microbiology 160, 1985–1998.CrossRefPubMedGoogle Scholar
  27. Gerbasi, V.R., Weaver, C.M., Hill, S., Friedman, D.B., and Link, A.J. 2004. Yeast Asc1p and mammalian RACK1 are functionally orthologous core 40S ribosomal proteins that repress gene expression. Mol. Cell. Biol. 24, 8276–8287.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Gold, S., Duncan, G., Barrett, K., and Kronstad, J. 1994. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev. 8, 2805–2816.CrossRefPubMedGoogle Scholar
  29. Gong, J., Grodsky, J.D., Zhang, Z., and Wang, P. 2014. A Ric8/synembryn homolog promotes Gpa1 and Gpa2 activation to respectively regulate cyclic AMP and pheromone signaling in Cryptococcus neoformans. Eukaryot. Cell. 13, 1290–1299.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Han, K., Do, E., and Jung, W.H. 2012. A human fungal pathogen Cryptococcus neoformans expresses three distinct iron permease homologs. J. Microbiol. Biotechnol. 22, 1644–1652.CrossRefPubMedGoogle Scholar
  31. Hartmann, H.A., Kahmann, R., and Bolker, M. 1996. The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J. 15, 1632–1641.PubMedCentralPubMedGoogle Scholar
  32. Hsueh, Y.P., Xue, C., and Heitman, J. 2007. G protein signaling governing cell fate decisions involves opposing Ga subunits in Cryptococcus neoformans. Mol. Biol. Cell. 18, 3237–3249.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Hu, G., Caza, M., Cadieux, B., Bakkeren, E., Do, E., Jung, W.H., and Kronstad, J.W. 2015. The endosomal sorting complex required for transport machinery influences haem uptake and capsule elaboration in Cryptococcus neoformans. Mol. Microbiol. Article in press.Google Scholar
  34. Hu, G., Caza, M., Cadieux, B., Chan, V., Liu, V., and Kronstad, J. 2013. Cryptococcus neoformans requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule formation, and for virulence. Infect. Immun. 81, 292–302.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Jung, W.H., Hu, G., Kuo, W., and Kronstad, J.W. 2009. Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans. Eukaryot. Cell. 8, 1511–1520.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Jung, W.H. and Kronstad, J.W. 2008. Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cell. Microbiol. 10, 277–284.CrossRefPubMedGoogle Scholar
  37. Jung, W.H., Sham, A., White, R., and Kronstad, J.W. 2006. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol. 4, e410.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Jung, K., Strain, A.K., Nielsen, K., Jung, K., and Bahn, Y. 2012. Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway. Fungal Genet. Biol. 49, 332–345.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Jung, K., Yang, D., Maeng, S., Lee, K., So, Y., Hong, J., Choi, J., Byun, H., Kim, H., and Bang, S. 2015. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat. Commun. 6, doi:10.1038/ncomms7757.Google Scholar
  40. Kaffarnik, F., Müller, P., Leibundgut, M., Kahmann, R., and Feldbrügge, M. 2003. PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis. EMBO J. 22, 5817–5826.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Kahmann, R., Romeis, T., Bölker, M., and Kämper, J. 1995. Control of mating and development in Ustilago maydis. Curr. Opin. Genet. Dev. 5, 559–564.CrossRefPubMedGoogle Scholar
  42. Klose, J., De Sá, M.M., and Kronstad, J.W. 2004. Lipid-induced filamentous growth in Ustilago maydis. Mol. Microbiol. 52, 823–835.CrossRefPubMedGoogle Scholar
  43. Klosterman, S.J., Perlin, M.H., Garcia-Pedrajas, M., Covert, S.F., and Gold, S.E. 2007. Genetics of morphogenesis and pathogenic development of Ustilago maydis. Adv. Genet. 57, 1–47.CrossRefPubMedGoogle Scholar
  44. Kozubowski, L. and Heitman, J. 2012. Profiling a killer, the development of Cryptococcus neoformans. FEMS Microbiol. Rev. 36, 78–94.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Kozubowski, L., Lee, S.C., and Heitman, J. 2009. Signalling pathways in the pathogenesis of Cryptococcus. Cell. Microbiol. 11, 370–380.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Kronstad, J.W., Attarian, R., Cadieux, B., Choi, J., D’Souza, C.A., Griffiths, E.J., Geddes, J.M., Hu, G., Jung, W.H., and Kretschmer, M. 2011a. Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat. Rev. Microbiol. 9, 193–203.CrossRefPubMedGoogle Scholar
  47. Kronstad, J., De Maria, A., Funnell, D., Laidlaw, R.D., Lee, N., de Sá, M.M., and Ramesh, M. 1998. Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways. Arch. Microbiol. 170, 395–404.CrossRefPubMedGoogle Scholar
  48. Kronstad, J.W., Hu, G., and Choi, J. 2011b. The cAMP/protein kinase A pathway and virulence in Cryptococcus neoformans. Mycobiology 39, 143–150.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Kronstad, J. and Staben, C. 1997. Mating type in filamentous fungi. Annu. Rev. Genet. 31, 245–276.CrossRefPubMedGoogle Scholar
  50. Leberer, E., Harcus, D., Dignard, D., Johnson, L., Ushinsky, S., Thomas, D.Y., and Schröppel, K. 2001. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol. Microbiol. 42, 673–687.CrossRefPubMedGoogle Scholar
  51. Lee, N., D’Souza, C.A., and Kronstad, J.W. 2003. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu. Rev. Phytopathol. 41, 399–427.CrossRefPubMedGoogle Scholar
  52. Liebmann, B., Muller, M., Braun, A., and Brakhage, A.A. 2004. The cyclic AMP-dependent protein kinase A network regulates development and virulence in Aspergillus fumigatus. Infect. Immun. 72, 5193–5203.PubMedCentralCrossRefPubMedGoogle Scholar
  53. Maeng, S., Ko, Y.J., Kim, G.B., Jung, K.W., Floyd, A., Heitman, J., and Bahn, Y.S. 2010. Comparative transcriptome analysis reveals novel roles of the Ras and cyclic AMP signaling pathways in environmental stress response and antifungal drug sensitivity in Cryptococcus neoformans. Eukaryot. Cell. 9, 360–378.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Maier, E.J., Haynes, B.C., Gish, S.R., Wang, Z.A., Skowyra, M.L., Marulli, A.L., Doering, T.L., and Brent, M.R. 2015. Model-driven mapping of transcriptional networks reveals the circuitry and dynamics of virulence regulation. Genome Res. 25, 690–700.CrossRefPubMedGoogle Scholar
  55. Martínez-Espinoza, A.D., Ruiz-Herrera, J., León-Ramírez, C.G., and Gold, S.E. 2004. MAP kinase and cAMP signaling pathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungus Ustilago maydis. Curr. Microbiol. 49, 274–281.CrossRefPubMedGoogle Scholar
  56. Mayorga, M.E. and Gold, S.E. 1999. A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence. Mol. Microbiol. 34, 485–497.CrossRefPubMedGoogle Scholar
  57. Mitchell, T.K. and Dean, R.A. 1995. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell. 7, 1869–1878.PubMedCentralCrossRefPubMedGoogle Scholar
  58. Mitchell, T.G. and Perfect, J.R. 1995. Cryptococcosis in the era of AIDS-100 years after the discovery of Cryptococcus neoformans. Clin. Microbiol. Rev. 8, 515–548.PubMedCentralPubMedGoogle Scholar
  59. Muller, P., Leibbrandt, A., Teunissen, H., Cubasch, S., Aichinger, C., and Kahmann, R. 2004. The Gß-subunit-encoding gene bpp1 controls cyclic-AMP signaling in Ustilago maydis. Eukaryot. Cell 3, 806–814.PubMedCentralCrossRefPubMedGoogle Scholar
  60. Okagaki, L.H., Wang, Y., Ballou, E.R., O’Meara, T.R., Bahn, Y.S., Alspaugh, J.A., Xue, C., and Nielsen, K. 2011. Cryptococcal titan cell formation is regulated by G-protein signaling in response to multiple stimuli. Eukaryot. Cell 10, 1306–1316.PubMedCentralCrossRefPubMedGoogle Scholar
  61. O’Meara, T.R., Holmer, S.M., Selvig, K., Dietrich, F., and Alspaugh, J.A. 2013. Cryptococcus neoformans Rim101 is associated with cell wall remodeling and evasion of the host immune responses. MBio 4, 10.1128/mBio.00522-12.Google Scholar
  62. O’Meara, T.R., Norton, D., Price, M.S., Hay, C., Clements, M.F., Nichols, C.B., and Alspaugh, J.A. 2010. Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Path. 6, e1000776.CrossRefGoogle Scholar
  63. O’Meara, T.R., Xu, W., Selvig, K.M., O’Meara, M.J., Mitchell, A.P., and Alspaugh, J.A. 2014. The Cryptococcus neoformans Rim101 transcription factor directly regulates genes required for adaptation to the host. Mol. Cell. Biol. 34, 673–684.PubMedCentralCrossRefPubMedGoogle Scholar
  64. Ost, K.S., O’Meara, T.R., Huda, N., Esher, S.K., and Alspaugh, J.A. 2015. The Cryptococcus neoformans alkaline response pathway: Identification of a novel Rim pathway activator. PLoS Genet. 11, e1005159.PubMedCentralCrossRefPubMedGoogle Scholar
  65. Palmer, D.A., Thompson, J.K., Li, L., Prat, A., and Wang, P. 2006. Gib2, a novel Gß-like/RACK1 homolog, functions as a Gß subunit in cAMP signaling and is essential in Cryptococcus neoformans. J. Biol. Chem. 281, 32596–32605.CrossRefPubMedGoogle Scholar
  66. Park, B.J., Wannemuehler, K.A., Marston, B.J., Govender, N., Pappas, P.G., and Chiller, T.M. 2009. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23, 525–530.CrossRefPubMedGoogle Scholar
  67. Pukkila-Worley, R., Gerrald, Q.D., Kraus, P.R., Boily, M.J., Davis, M.J., Giles, S.S., Cox, G.M., Heitman, J., and Alspaugh, J.A. 2005. Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot. Cell 4, 190–201.PubMedCentralCrossRefPubMedGoogle Scholar
  68. Rachfall, N., Schmitt, K., Bandau, S., Smolinski, N., Ehrenreich, A., Valerius, O., and Braus, G.H. 2013. RACK1/Asc1p, a ribosomal node in cellular signaling. Mol. Cell. Proteomics 12, 87–105.PubMedCentralCrossRefPubMedGoogle Scholar
  69. Regenfelder, E., Spellig, T., Hartmann, A., Lauenstein, S., Bölker, M., and Kahmann, R. 1997. G proteins in Ustilago maydis: transmission of multiple signals?. EMBO J. 16, 1934–1942.PubMedCentralCrossRefPubMedGoogle Scholar
  70. Roach, K.C., Feretzaki, M., Sun, S., and Heitman, J. 2014. Unisexual reproduction. Adv. Genet. 85, 255–305.CrossRefPubMedGoogle Scholar
  71. Robertson, L.S., Causton, H.C., Young, R.A., and Fink, G.R. 2000. The yeast A kinases differentially regulate iron uptake and respiratory function. Proc. Natl. Acad. Sci. USA 97, 5984–5988.PubMedCentralCrossRefPubMedGoogle Scholar
  72. Selvig, K. and Alspaugh, J.A. 2011. pH response pathways in fungi: adapting to host-derived and environmental signals. Mycobiology 39, 249–256.PubMedCentralCrossRefPubMedGoogle Scholar
  73. Snetselaar, K.M. and Mims, C.W. 1994. Light and electron microscopy of Ustilago maydis hyphae in maize. Mycol. Res. 98, 347–355.CrossRefGoogle Scholar
  74. Snetselaar, K.M. and Mims, C.W. 1992. Sporidial fusion and infection of maize seedlings by the smut fungus Ustilago maydis. Mycologia 84, 193–203.CrossRefGoogle Scholar
  75. Tangen, K.L., Jung, W.H., Sham, A.P., Lian, T., and Kronstad, J.W. 2007. The iron- and cAMP-regulated gene SIT1 influences ferrioxamine B utilization, melanization and cell wall structure in Cryptococcus neoformans. Microbiology 153, 29–41.CrossRefPubMedGoogle Scholar
  76. Thevelein, J.M. and De Winde, J.H. 1999. Novel sensing mechanisms and targets for the cAMP–protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 33, 904–918.CrossRefPubMedGoogle Scholar
  77. Valerius, O., Kleinschmidt, M., Rachfall, N., Schulze, F., Lopez Marin, S., Hoppert, M., Streckfuss-Bomeke, K., Fischer, C., and Braus, G.H. 2007. The Saccharomyces homolog of mammalian RACK1, Cpc2/Asc1p, is required for FLO11-dependent adhesive growth and dimorphism. Mol. Cell. Proteomics 6, 1968–1979.CrossRefPubMedGoogle Scholar
  78. Vollmeister, E., Schipper, K., Baumann, S., Haag, C., Pohlmann, T., Stock, J., and Feldbrügge, M. 2012. Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol. Rev. 36, 59–77.CrossRefPubMedGoogle Scholar
  79. Wang, L., Berndt, P., Xia, X., Kahnt, J., and Kahmann, R. 2011. A seven-WD40 protein related to human RACK1 regulates mating and virulence in Ustilago maydis. Mol. Microbiol. 81, 1484–1498.CrossRefPubMedGoogle Scholar
  80. Wang, P., Perfect, J.R., and Heitman, J. 2000. The G-protein ß subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol. Cell. Biol. 20, 352–362.PubMedCentralCrossRefPubMedGoogle Scholar
  81. Wang, Y., Shen, G., Gong, J., Shen, D., Whittington, A., Qing, J., Treloar, J., Boisvert, S., Zhang, Z., Yang, C., et al. 2014. Noncanonical Gß Gib2 is a scaffolding protein promoting cAMP signaling through functions of Ras1 and Cac1 proteins in Cryptococcus neoformans. J. Biol. Chem. 289, 12202–12216.PubMedCentralCrossRefPubMedGoogle Scholar
  82. Xue, C., Bahn, Y.S., Cox, G.M., and Heitman, J. 2006. G proteincoupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol. Biol. Cell. 17, 667–679.PubMedCentralCrossRefPubMedGoogle Scholar
  83. Zaragoza, O., García-Rodas, R., Nosanchuk, J.D., Cuenca-Estrella, M., Rodríguez-Tudela, J.L., and Casadevall, A. 2010. Fungal cell gigantism during mammalian infection. PLoS Path. 6, e1000945.CrossRefGoogle Scholar
  84. Zaragoza, O. and Nielsen, K. 2013. Titan cells in Cryptococcus neoformans: cells with a giant impact. Curr. Opin. Microbiol. 16, 409–413.PubMedCentralCrossRefPubMedGoogle Scholar
  85. Zeller, C.E., Parnell, S.C., and Dohlman, H.G. 2007. The RACK1 ortholog Asc1 functions as a G-protein β subunit coupled to glucose responsiveness in yeast. J. Biol. Chem. 282, 25168–25176.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jaehyuk Choi
    • 1
  • Won Hee Jung
    • 2
  • James W. Kronstad
    • 3
    Email author
  1. 1.Division of Life Sciences, and Culture Collection and DNA Bank of MushroomsIncheon National UniversityIncheonRepublic of Korea
  2. 2.Department of Systems BiotechnologyChung-Ang UniversityAnseongRepublic of Korea
  3. 3.The Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food SystemsUniversity of British ColumbiaVancouverCanada

Personalised recommendations