Unraveling interactions in microbial communities - from co-cultures to microbiomes
- 1.5k Downloads
- 21 Citations
Abstract
Microorganisms do not exist in isolation in the environment. Instead, they form complex communities among themselves as well as with their hosts. Different forms of interactions not only shape the composition of these communities but also define how these communities are established and maintained. The kinds of interaction a bacterium can employ are largely encoded in its genome. This allows us to deploy a genomescale modeling approach to understand, and ultimately predict, the complex and intertwined relationships in which microorganisms engage. So far, most studies on microbial communities have been focused on synthetic co-cultures and simple communities. However, recent advances in molecular and computational biology now enable bottom up methods to be deployed for complex microbial communities from the environment to provide insight into the intricate and dynamic interactions in which microorganisms are engaged. These methods will be applicable for a wide range of microbial communities involved in industrial processes, as well as understanding, preserving and reconditioning natural microbial communities present in soil, water, and the human microbiome.
Keywords
synthetic communities system biology co-cultures metabolic modelsPreview
Unable to display preview. Download preview PDF.
References
- Aliaga Goltsman, D.S., Denef, V.J., Singer, S.W., VerBerkmoes, N.C., Lefsrud, M., Mueller, R.S., Dick, G.J., Sun, C.L., Wheeler, K.E., Zemla, A., et al. 2009. Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing Leptospirillum Rubarum (Group II) and Leptospirillum Ferrodiazotrophum (Group III) bacteria in acid mine drainage biofilms. Appl. Environ. Microbiol. 75, 4599–4615.Google Scholar
- Balagaddé, F.K., Song, H., Ozaki, J., Collins, C.H., Barnet, M., Arnold, F.H., Quake, S.R., and You, L. 2008. A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 4, 187.PubMedCentralPubMedGoogle Scholar
- Basu, S., Gerchman, Y., Collins, C., Arnold, F., and Weiss, R. 2005. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134.PubMedGoogle Scholar
- Basu, S., Mehreja, R., Thiberge, S., Chen, M.T., and Weiss, R. 2004. Spatiotemporal control of gene expression with pulse-generating networks. Proc. Natl. Acad. Sci. USA 101, 6355–6360.PubMedCentralPubMedGoogle Scholar
- Bernstein, H., Paulson, S., and Carlson, R. 2012. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J. Biotechnol. 157, 159–166.PubMedCentralPubMedGoogle Scholar
- Bordbar, A., Lewis, N.E., Schellenberger, J., Palsson, B.Ø., and Jamshidi, N. 2010. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol. Syst. Biol. 6, 422.PubMedCentralPubMedGoogle Scholar
- Bordbar, A., Monk, J.M., King, Z.A., and Palsson, B.O. 2014. Constraint- based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107–120.PubMedGoogle Scholar
- Brenner, K., You, L., and Arnold, F.H. 2008. Engineering microbial consortia: A new frontier in synthetic biology. Trends Biotechnol. 26, 483–489.PubMedGoogle Scholar
- Buizza, R., Tribbia, J., Molteni, F., and Palmer, T. 1993. Computation of optimal unstable structures for a numerical weather prediction model. Tellus. 45, 388–407.Google Scholar
- Canstein, H. Von and Kelly, S. 2002. Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl. Environ. Microbiol. 68, 2829–2837.Google Scholar
- Caporaso, J., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature 7, 335–336.Google Scholar
- Carson, H.S., Nerheim, M.S., Carroll, K.A., and Eriksen, M. 2013. The plastic-associated microorganisms of the north pacific gyre. Mar. Pollut. Bull. 75, 126–132.Google Scholar
- Celiker, H. and Gore, J. 2012. Competition between species can stabilize public-goods cooperation within a species. Mol. Syst. Biol. 8, 621.PubMedCentralPubMedGoogle Scholar
- Chen, P. and Schnabl, B. 2014. Host-microbiome interactions in alcoholic liver disease. Gut Liver 8, 237–241.PubMedCentralPubMedGoogle Scholar
- Chen, P., Torralba, M., Tan, J., Embree, M., Zengler, K., Stärkel, P., Pijkeren, J.P. Van, DePew, J., Loomba, R., Ho, S.B., et al. 2014. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 148, 203–214.PubMedGoogle Scholar
- Cho, B., Zengler, K., Qiu, Y., Park, Y.S., Knight, E.M., Barrett, C., Gao, Y., and Palsson, B.Ø. 2009. Elucidation of the transcription unit architecture of the Escherichia coli K-12 MG1655 genome. Nat. Biotechnol. 27, 1043–1049.PubMedGoogle Scholar
- Clemente, J.C., Ursell, L.K., Parfrey, L.W., and Knight, R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270.PubMedGoogle Scholar
- De Roy, K., Marzorati, M., van den Abbeele, P., Van de Wiele, T., and Boon, N. 2014. Synthetic microbial ecosystems: An exciting tool to understand and apply microbial communities. Environ. Microbiol. 16, 1472–1481.PubMedGoogle Scholar
- Ding, T. and Schloss, P.D. 2014. Dynamics and associations of microbial community types across the human body. Nature 509, 357–360.PubMedGoogle Scholar
- Ding, M.Z., Zou, Y., Song, H., and Yuan, Y.J. 2014. Metabolomic analysis of cooperative adaptation between cocultured Bacillus cereus and Ketogulonicigenium vulgare. PLoS One 9, e94889.Google Scholar
- Dopson, M. and Lindstrom, E.B. 1999. Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol. 65, 36–40.PubMedCentralPubMedGoogle Scholar
- Du, J., Bai, W., Song, H., and Yuan, Y.J. 2013. Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-l-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Metab. Eng. 19, 50–56.PubMedGoogle Scholar
- Duarte, N.C., Becker, S.A., Jamshidi, N., Thiele, I., Mo, M.L., Vo, T.D., Srivas, R., and Palsson, B.Ø. 2007. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. USA 104, 1777–1782.PubMedCentralPubMedGoogle Scholar
- Dunn, I.J., Heinzle, E., Ingham, J., and Prenosil, J.E. 2003. Biological reaction engineering. John Wiley and Sons. Google Scholar
- Edwards, J.S., Covert, M., and Palsson, B. 2002. Metabolic modelling of microbes: The flux-balance approach. Environ. Microbiol. 4, 133–140.PubMedGoogle Scholar
- Eiteman, M.A., Lee, S.A., and Altman, E. 2008. A co-fermentation strategy to consume sugar mixtures effectively. J. Biol. Eng. 2, 3.PubMedCentralPubMedGoogle Scholar
- Embree, M., Nagarajan, H., Movahedi, N., Chitsaz, H., and Zengler, K. 2013. Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community. ISME J. 8, 757–767.PubMedCentralPubMedGoogle Scholar
- Ercolini, D., Hill, P.J.P., and Dodd, C.E.R. 2003. Bacterial community structure and location in stilton cheese. Appl. Environ. Microbiol. 69, 3540–3548.PubMedCentralPubMedGoogle Scholar
- Estrela, S., Trisos, C., and Brown, S. 2012. From metabolism to ecology: cross-feeding interactions shape the balance between polymicrobial conflict and mutualism. Am. Nat. 180, 566–576.PubMedCentralPubMedGoogle Scholar
- Everroad, R.C., Yoshida, S., Tsuboi, Y., Date, Y., Kikuchi, J., and Moriya, S. 2012. Concentration of metabolites from low-density planktonic communities for environmental metabolomics using nuclear magnetic resonance spectroscopy. J. Vis. Exp. 62, e3163.PubMedGoogle Scholar
- Faith, J., Rey, F., O’Donnell, D., Karlsson, M., McNulty, N.P., Kallstrom, G., Goodman, A.L., and Gordon, J.I. 2010. Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME J. 4, 1094–1998.PubMedCentralPubMedGoogle Scholar
- Ferziger, J.H., Peric, M., and Leonard, A. 1997. Computational methods for fluid dynamics. Phys. Today 50, 80.Google Scholar
- Fuqua, W.C., Winans, S.C., and Greenberg, E.P. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275.PubMedCentralPubMedGoogle Scholar
- Gevers, D., Kugathasan, S., Denson, L.A., Vázquez-Baeza, Y., Van Treuren, W., Ren, B., Schwager, E., Knights, D., Song, S.J., Yassour, M., et al. 2014. The treatment-naive microbiome in newonset Crohn’s disease. Cell Host Microbe 15, 382–392.PubMedCentralPubMedGoogle Scholar
- Gore, J., Youk, H., and van Oudenaarden, A. 2009. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256.PubMedCentralPubMedGoogle Scholar
- Gudelj, I., Weitz, J.S., Ferenci, T., Claire Horner-Devine, M., Marx, C.J., Meyer, J.R., and Forde, S.E. 2010. An integrative approachto understanding microbial diversity: from intracellular mechanisms to community structure. Ecol. Lett. 13, 1073–1084.PubMedCentralPubMedGoogle Scholar
- Hanly, T.J. and Henson, M.A. 2011. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol. Bioeng. 108, 376–385.PubMedGoogle Scholar
- Hanly, T.J. and Henson, M.A. 2013. Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol. Biofuels 6, 44.PubMedCentralPubMedGoogle Scholar
- Hanly, T.J., Urello, M., and Henson, M.A. 2012. Dynamic flux balance modeling of S. cerevisiae and E. coli cocultures for efficient consumption of glucose/xylose mixtures. Appl. Microbiol. Biotechnol. 93, 2529–2541.PubMedGoogle Scholar
- Harcombe, W.R., Riehl, W.J., Dukovski, I., Granger, B.R., Betts, A., Lang, A.H., Bonilla, G., Kar, A., Leiby, N., Mehta, P., et al. 2014. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115.PubMedCentralPubMedGoogle Scholar
- Heim, R., Cubitt, A., and Tsien, R. 1995. Improved green fluorescence. Nature 373, 663–664.PubMedGoogle Scholar
- Heinken, A., Sahoo, S., Fleming, R.M.T., and Thiele, I. 2013. Systemslevel characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4, 28–40.PubMedCentralPubMedGoogle Scholar
- Henson, M.A. and Hanly, T.J. 2014. Dynamic flux balance analysis for synthetic microbial communities. IET Syst. Biol. 8, 214–229.PubMedGoogle Scholar
- Hillesland, K.L. and Stahl, D.A. 2010. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl. Acad. Sci. USA 107, 2124–2129.PubMedCentralPubMedGoogle Scholar
- Hong, S.H., Hegde, M., Kim, J., Wang, X., Jayaraman, A., and Wood, T.K. 2012. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nat. Commun. 3, 613.PubMedCentralPubMedGoogle Scholar
- Hosoda, K., Suzuki, S., Yamauchi, Y., Shiroguchi, Y., Kashiwagi, A., Ono, N., Mori, K., and Yomo, T. 2011. Cooperative adaptation to establishment of a synthetic bacterial mutualism. PLoS One 6, e17105.Google Scholar
- Hosoda, K. and Yomo, T. 2014. Designing symbiosis. Bioeng. Bugs. 2, 338–341.Google Scholar
- Hu, B., Du, J., Zou, R., and Yuan, Y. 2010. An environment-sensitive synthetic microbial ecosystem. PLoS One 5, e10619.Google Scholar
- Huse, S.M., Dethlefsen, L., Huber, J.A., Welch, D.M., Relman, D.A., and Sogin, M.L. 2008. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 4, e1000255.Google Scholar
- Imelfort, M., Parks, D., Woodcroft, B.J., Dennis, P., Hugenholtz, P., and Tyson, G.W. 2014. GroopM: An automated tool for the recovery of population genomes from related metagenomes. PeerJ. 2, e603.Google Scholar
- Jiménez, D.J., Korenblum, E., and van Elsas, J.D. 2014. Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Appl. Microbiol. Biotechnol. 98, 2789–2803.PubMedGoogle Scholar
- Kashtan, N., Roggensack, S.E.S., Rodrigue, S., Thompson, J.W., Biller, S.J., Coe, A., Ding, H., Marttinen, P., Malmstrom, R.R., Stocker, R., et al. 2014. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–421.PubMedGoogle Scholar
- Kerner, A., Park, J., Williams, A., and Lin, X.N. 2012. A programmable Escherichia coli consortium via tunable symbiosis. PLoS One 7, e34032.Google Scholar
- Kerr, B., Riley, M., Feldman, M., and Bohannan, B. 2002. Local dispersal promotes biodiversity in a real-life game of rock-paperscissors. Nature 418, 171–174.PubMedGoogle Scholar
- Kihara, K., Mori, K., Suzuki, S., Ono, N., Furusawa, C., and Yomo, T. 2009. Global/temporal gene expression analysis of Escherichia coli in the early stages of symbiotic relationship development with the cellular slime mold Dictyostelium discoideum. Biosystems 96, 141–164.PubMedGoogle Scholar
- Kim, H.J., Boedicker, J.Q., Choi, J.W., and Ismagilov, R.F. 2008. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl. Acad. Sci. USA 105, 18188–18193.PubMedCentralPubMedGoogle Scholar
- Kim, M. and Chun, J. 2005. Bacterial community structure in kimchi, a korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103, 91–96.PubMedGoogle Scholar
- Klitgord, N. and Segre, D. 2010. Environments that induce synthetic microbial ecosystems. PLoS Comput. Biol. 6, e1001002.Google Scholar
- Köhler, T., Perron, G.G., Buckling, A., and van Delden, C. 2010. Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathog. 6, e1000883.Google Scholar
- Koide, T., Pang, W.L.W., and Baliga, N.S.N. 2009. The role of predictive modelling in rationally re-engineering biological systems. Nat. Rev. Microbiol. 7, 297–305.PubMedCentralPubMedGoogle Scholar
- Latif, H., Lerman, J.A., Portnoy, V.A., Tarasova, Y., Nagarajan, H., Schrimpe-Rutledge, A.C., Smith, R.D., Adkins, J.N., Lee, D.H., Qiu, Y., et al. 2013. The genome organization of Thermotoga maritima reflects its lifestyle. PLoS Genet. 9, e1003485.Google Scholar
- Lay-Son, M. and Drakides, C. 2008. New approach to optimize operational conditions for the biological treatment of a highstrength thiocyanate and ammonium waste: pH as key factor. Water Res. 42, 774–780.PubMedGoogle Scholar
- Lazupone, C.A., Li, M., Campbell, T.B., Flores, S.C., Linderman, D., Gebert, M.J., Knight, R., Fontenot, A.P., and Palmer, B.E. 2013. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe 14, 1–21.Google Scholar
- Lin, H., Wang, B., Zhuang, R., Zhou, Q., and Zhao, Y. 2011. Artificial construction and characterization of a fungal consortium that produces cellulolytic enzyme system with strong wheat straw saccharification. Bioresour. Technol. 102, 10569–10576.PubMedGoogle Scholar
- Ma, Q., Zhou, J., Zhang, W., Meng, X., Sun, J., and Yuan, Y.J. 2011. Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C. PLoS One 6, e26108.Google Scholar
- Ma, Q., Zou, Y., Lv, Y., Song, H., and Yuan, Y.J. 2014. Comparative proteomic analysis of experimental evolution of the Bacillus cereus-Ketogulonicigenium vulgare co-culture. PLoS One 9, e91789.Google Scholar
- MacLean, R.C. and Gudelj, I. 2006. Resource competition and social conflict in experimental populations of yeast. Nature 441, 498–501.PubMedGoogle Scholar
- Mahadevan, R., Edwards, J.S., and Doyle, F.J. 2002. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83, 1331–1340.PubMedCentralPubMedGoogle Scholar
- Maleke, M., Williams, P., Castillo, J., Botes, E., Ojo, A., DeFlaun, M., and van Heerden, E. 2014. Optimization of a bioremediation system of soluble uranium based on the biostimulation of an indigenous bacterial community. Environ. Sci. Pollut. Res. Int. DOI 10.1007/s11356-014-3980-7.Google Scholar
- Marmeisse, R., Bailly, J., Damon, C., Lehembre, F., Lemaire, M., Wésolowski-Louvel, M., and Fraissinet-Tachet, L. 2011. Soil eukaryotic diversity: A metatranscriptomic approach, pp. 597–602.In Handb. Mol. Microb. Ecol. I Metagenomics Complement. Approaches. Google Scholar
- McCook, L. 1994. Understanding ecological community succession: causal models and theories, a review. Vegetatio. 110, 115–147.Google Scholar
- Minty, J.J., Singer, M.E., Scholz, S.A., Bae, C.H., Ahn, J.H., Foster, C.E., Liao, J.C., and Lin, X.N. 2013. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc. Natl. Acad. Sci. USA 110, 14592–14597.PubMedCentralPubMedGoogle Scholar
- Momeni, B., Waite, A.J., and Shou, W. 2013. Spatial self-organization favors heterotypic cooperation over cheating. Elife. 2, e00960.Google Scholar
- Monk, J.M., Charusanti, P., Aziz, R.K., Lerman, J.A., Premyodhin, N., Orth, J.D., Feist, A.M., and Palsson, B.Ø. 2013. Genome-scalemetabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc. Natl. Acad. Sci. USA 110, 20338–20343.PubMedCentralPubMedGoogle Scholar
- Morgan-Sagastume, F., Larsen, P., Nielsen, J.L., and Nielsen, P.H. 2008. Characterization of the loosely attached fraction of activated sludge bacteria. Water Res. 42, 843–854.PubMedGoogle Scholar
- Nagarajan, H., Embree, M., Rotaru, A., Shrestha, P.M., Feist, A.M., Palsson, B.Ø., Lovley, D.R., and Zengler, K. 2013. Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association. Nat. Commun. 4, 1–10.Google Scholar
- NCBI. 2014. National Center for Biotechnology Information, NCBI. Genome.Google Scholar
- Nützmann, H., Reyes-Dominguez, Y., Scherlach, K., Schroeckh, V., Horn, F., Gacek, A., Schumann, J., Hertweck, C., Strauss, J., and Brakhage, A.A. 2011. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires saga/ada-mediated histone acetylation. Proc. Natl. Acad. Sci. USA 108, 14282–14287.PubMedCentralPubMedGoogle Scholar
- O’Brien, E.J., Lerman, J.A., Chang, R.L., Hyduke, D.R., and Palsson, B.Ø. 2013. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst. Biol. 9, 693.PubMedCentralPubMedGoogle Scholar
- Ola, A.R.B., Thomy, D., Lai, D., and Proksch, P. 2013. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J. Nat. Prod. 76, 2094–2099.PubMedGoogle Scholar
- Overbeek, R., Begley, T., Butler, R.M., Choudhuri, J.V., Chuang, H.Y., Cohoon, M., de Crécy-Lagard, V., Diaz, N., Disz, T., Edwards, R., et al. 2005. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691–5702.PubMedCentralPubMedGoogle Scholar
- Poretsky, R.S., Bano, N., Buchan, A., LeCleir, G., Kleikemper, J., Pickering, M., Pate, W.M., Moran, M.A., and Hollibaugh, J.T. 2005. Analysis of microbial gene transcripts in environmental samples. Appl. Environ. Microbiol. 71, 4121–4126.PubMedCentralPubMedGoogle Scholar
- Qiu, Y., Cho, B.K., Park, Y.S., Lovley, D., Palsson, B., and Zengler, K. 2010. Structural and operational complexity of the Geobacter sulfurreducens genome. Genome Res. 20, 1304–1311.PubMedCentralPubMedGoogle Scholar
- Raman, K. and Chandra, N. 2009. Flux balance analysis of biological systems: Applications and challenges. Brief. Bioinform. 10, 435–449.PubMedGoogle Scholar
- Relman, D.A. 2013. Restoration of the gut microbial habitat as a disease therapy. Nat. Biotechnol. 31, 35–37.PubMedGoogle Scholar
- Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Alexis, E., Kau, A.L., Griffin, N.W., Lombard, V., Henrissat, B., Bain, J.R., et al. 2013. Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science 341, 1–22.Google Scholar
- Schellenberger, J., Que, R., Fleming, R.M.T., Thiele, I., Orth, J.D., Feist, A.M., Zielinski, D.C., Bordbar, A., Lewis, N.E., Rahmanian, S., et al. 2011. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0. Nat. Protoc. 6, 1290–1307.PubMedCentralPubMedGoogle Scholar
- Schroeckh, V., Scherlach, K., Nutzmann, H., Shelest, E., Schmidtheck, W., Schuemann, J., Martin, K., Hertweck, C., and Brakhage, A.A. 2009. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 106, 14558–14563.PubMedCentralPubMedGoogle Scholar
- Shong, J., Jimenez Diaz, M.R., and Collins, C.H. 2012. Towards synthetic microbial consortia for bioprocessing. Curr. Opin. Biotechnol. 23, 798–802.PubMedGoogle Scholar
- Shou, W., Ram, S., and Vilar, J.M.G. 2007. Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. USA 104, 1877–1882.PubMedCentralPubMedGoogle Scholar
- Sridharan, G.V., Choi, K., Klemashevich, C., Wu, C., Prabakaran, D., Pan, L. Bin, Steinmeyer, S., Mueller, C., Yousofshahi, M., Alaniz, R.C., et al. 2014. Prediction and quantification of bioactive microbiota metabolites in the mouse gut. Nat. Commun. 5, 5492.PubMedGoogle Scholar
- Stolyar, S., Van Dien, S., Hillesland, K.L., Pinel, N., Lie, T.J., Leigh, J.A., and Stahl, D.A. 2007. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3, 92.Google Scholar
- Summers, Z.M., Fogarty, H.E., Leang, C., Franks, A.E., Malvankar, N.S., and Lovley, D.R. 2010. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330 1413–1415.PubMedGoogle Scholar
- Swift, S., Throup, J.P., Williams, P., Salmond, G.P.C., and Stewart, G.S.A.B. 1996. Quorum sensing: a population-density component in the determination of bacterial phenotype. Trends Biochem. Sci. 21, 214–219.PubMedGoogle Scholar
- Tettelin, H., Masignani, V., Cieslewicz, M.J., Donati, C., Medini, D., Ward, N.L., Angiuoli, S.V, Crabtree, J., Jones, A.L., Durkin, A.S., et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “Pan-Genome”. Proc. Natl. Acad. Sci. USA 102, 13950–13955.PubMedCentralPubMedGoogle Scholar
- Tzamali, E., Poirazi, P., Tollis, I.G., and Reczko, M. 2009. Computational identification of bacterial communities. World Acad. Sci. Eng. Technol. 52, 269–275.Google Scholar
- Vallino, J.J. 2003. Modeling microbial consortiums as distributed metabolic networks. Biol. Bull. 204, 4–79.Google Scholar
- Walters, W.A., Xu, Z., and Knight, R. 2014. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223–4233.PubMedGoogle Scholar
- Wintermute, E.H. and Silver, P.A. 2010. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407.PubMedCentralPubMedGoogle Scholar
- Zengler, K. 2008. Accessing uncultivated microorganisms: from the environment to organisms and genomes and back. ASM Press, Washington, D.C., USA. Google Scholar
- Zengler, K. 2009. Central role of the cell in microbial ecology. Microbiol. Mol. Biol. Rev. 73, 712–729.PubMedCentralPubMedGoogle Scholar
- Zengler, K. and Palsson, B.O. 2012. A road map for the development of community systems (CoSy) biology. Nat. Rev. Microbiol. 10, 366–372.PubMedGoogle Scholar
- Zhou, C., Ontiveros-Valencia, A., Cornette de Saint Cyr, L., Zevin, A.S., Carey, S.E., Krajmalnik-Brown, R., and Rittmann, B.E. 2014. Uranium removal and microbial community in a H2-based membrane biofilm reactor. Water Res. 64, 255–264.PubMedGoogle Scholar
- Zhuang, K., Izallalen, M., Mouser, P., Richter, H., Risso, C., Mahadevan, R., and Lovley, D.R. 2011. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5, 305–316.PubMedCentralPubMedGoogle Scholar
- Zomorrodi, A.R. and Maranas, C.D. 2012. OptCom: A multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 8, e1002363.Google Scholar
- Zupancic, M.L., Cantarel, B.L., Liu, Z., Drabek, E.F., Ryan, K.A., Cirimotich, S., Jones, C., Knight, R., Walters, W.A., Knights, D., et al. 2012. Analysis of the gut microbiota in the old order amish and its relation to the metabolic syndrome. PLoS One 7, e43052.Google Scholar