Journal of Microbiology

, Volume 53, Issue 5, pp 295–305 | Cite as

Unraveling interactions in microbial communities - from co-cultures to microbiomes

  • Justin Tan
  • Cristal Zuniga
  • Karsten ZenglerEmail author


Microorganisms do not exist in isolation in the environment. Instead, they form complex communities among themselves as well as with their hosts. Different forms of interactions not only shape the composition of these communities but also define how these communities are established and maintained. The kinds of interaction a bacterium can employ are largely encoded in its genome. This allows us to deploy a genomescale modeling approach to understand, and ultimately predict, the complex and intertwined relationships in which microorganisms engage. So far, most studies on microbial communities have been focused on synthetic co-cultures and simple communities. However, recent advances in molecular and computational biology now enable bottom up methods to be deployed for complex microbial communities from the environment to provide insight into the intricate and dynamic interactions in which microorganisms are engaged. These methods will be applicable for a wide range of microbial communities involved in industrial processes, as well as understanding, preserving and reconditioning natural microbial communities present in soil, water, and the human microbiome.


synthetic communities system biology co-cultures metabolic models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aliaga Goltsman, D.S., Denef, V.J., Singer, S.W., VerBerkmoes, N.C., Lefsrud, M., Mueller, R.S., Dick, G.J., Sun, C.L., Wheeler, K.E., Zemla, A., et al. 2009. Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing Leptospirillum Rubarum (Group II) and Leptospirillum Ferrodiazotrophum (Group III) bacteria in acid mine drainage biofilms. Appl. Environ. Microbiol. 75, 4599–4615.Google Scholar
  2. Balagaddé, F.K., Song, H., Ozaki, J., Collins, C.H., Barnet, M., Arnold, F.H., Quake, S.R., and You, L. 2008. A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 4, 187.PubMedCentralPubMedGoogle Scholar
  3. Basu, S., Gerchman, Y., Collins, C., Arnold, F., and Weiss, R. 2005. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134.PubMedGoogle Scholar
  4. Basu, S., Mehreja, R., Thiberge, S., Chen, M.T., and Weiss, R. 2004. Spatiotemporal control of gene expression with pulse-generating networks. Proc. Natl. Acad. Sci. USA 101, 6355–6360.PubMedCentralPubMedGoogle Scholar
  5. Bernstein, H., Paulson, S., and Carlson, R. 2012. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J. Biotechnol. 157, 159–166.PubMedCentralPubMedGoogle Scholar
  6. Bordbar, A., Lewis, N.E., Schellenberger, J., Palsson, B.Ø., and Jamshidi, N. 2010. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol. Syst. Biol. 6, 422.PubMedCentralPubMedGoogle Scholar
  7. Bordbar, A., Monk, J.M., King, Z.A., and Palsson, B.O. 2014. Constraint- based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107–120.PubMedGoogle Scholar
  8. Brenner, K., You, L., and Arnold, F.H. 2008. Engineering microbial consortia: A new frontier in synthetic biology. Trends Biotechnol. 26, 483–489.PubMedGoogle Scholar
  9. Buizza, R., Tribbia, J., Molteni, F., and Palmer, T. 1993. Computation of optimal unstable structures for a numerical weather prediction model. Tellus. 45, 388–407.Google Scholar
  10. Canstein, H. Von and Kelly, S. 2002. Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl. Environ. Microbiol. 68, 2829–2837.Google Scholar
  11. Caporaso, J., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature 7, 335–336.Google Scholar
  12. Carson, H.S., Nerheim, M.S., Carroll, K.A., and Eriksen, M. 2013. The plastic-associated microorganisms of the north pacific gyre. Mar. Pollut. Bull. 75, 126–132.Google Scholar
  13. Celiker, H. and Gore, J. 2012. Competition between species can stabilize public-goods cooperation within a species. Mol. Syst. Biol. 8, 621.PubMedCentralPubMedGoogle Scholar
  14. Chen, P. and Schnabl, B. 2014. Host-microbiome interactions in alcoholic liver disease. Gut Liver 8, 237–241.PubMedCentralPubMedGoogle Scholar
  15. Chen, P., Torralba, M., Tan, J., Embree, M., Zengler, K., Stärkel, P., Pijkeren, J.P. Van, DePew, J., Loomba, R., Ho, S.B., et al. 2014. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 148, 203–214.PubMedGoogle Scholar
  16. Cho, B., Zengler, K., Qiu, Y., Park, Y.S., Knight, E.M., Barrett, C., Gao, Y., and Palsson, B.Ø. 2009. Elucidation of the transcription unit architecture of the Escherichia coli K-12 MG1655 genome. Nat. Biotechnol. 27, 1043–1049.PubMedGoogle Scholar
  17. Clemente, J.C., Ursell, L.K., Parfrey, L.W., and Knight, R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270.PubMedGoogle Scholar
  18. De Roy, K., Marzorati, M., van den Abbeele, P., Van de Wiele, T., and Boon, N. 2014. Synthetic microbial ecosystems: An exciting tool to understand and apply microbial communities. Environ. Microbiol. 16, 1472–1481.PubMedGoogle Scholar
  19. Ding, T. and Schloss, P.D. 2014. Dynamics and associations of microbial community types across the human body. Nature 509, 357–360.PubMedGoogle Scholar
  20. Ding, M.Z., Zou, Y., Song, H., and Yuan, Y.J. 2014. Metabolomic analysis of cooperative adaptation between cocultured Bacillus cereus and Ketogulonicigenium vulgare. PLoS One 9, e94889.Google Scholar
  21. Dopson, M. and Lindstrom, E.B. 1999. Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol. 65, 36–40.PubMedCentralPubMedGoogle Scholar
  22. Du, J., Bai, W., Song, H., and Yuan, Y.J. 2013. Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-l-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Metab. Eng. 19, 50–56.PubMedGoogle Scholar
  23. Duarte, N.C., Becker, S.A., Jamshidi, N., Thiele, I., Mo, M.L., Vo, T.D., Srivas, R., and Palsson, B.Ø. 2007. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. USA 104, 1777–1782.PubMedCentralPubMedGoogle Scholar
  24. Dunn, I.J., Heinzle, E., Ingham, J., and Prenosil, J.E. 2003. Biological reaction engineering. John Wiley and Sons. Google Scholar
  25. Edwards, J.S., Covert, M., and Palsson, B. 2002. Metabolic modelling of microbes: The flux-balance approach. Environ. Microbiol. 4, 133–140.PubMedGoogle Scholar
  26. Eiteman, M.A., Lee, S.A., and Altman, E. 2008. A co-fermentation strategy to consume sugar mixtures effectively. J. Biol. Eng. 2, 3.PubMedCentralPubMedGoogle Scholar
  27. Embree, M., Nagarajan, H., Movahedi, N., Chitsaz, H., and Zengler, K. 2013. Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community. ISME J. 8, 757–767.PubMedCentralPubMedGoogle Scholar
  28. Ercolini, D., Hill, P.J.P., and Dodd, C.E.R. 2003. Bacterial community structure and location in stilton cheese. Appl. Environ. Microbiol. 69, 3540–3548.PubMedCentralPubMedGoogle Scholar
  29. Estrela, S., Trisos, C., and Brown, S. 2012. From metabolism to ecology: cross-feeding interactions shape the balance between polymicrobial conflict and mutualism. Am. Nat. 180, 566–576.PubMedCentralPubMedGoogle Scholar
  30. Everroad, R.C., Yoshida, S., Tsuboi, Y., Date, Y., Kikuchi, J., and Moriya, S. 2012. Concentration of metabolites from low-density planktonic communities for environmental metabolomics using nuclear magnetic resonance spectroscopy. J. Vis. Exp. 62, e3163.PubMedGoogle Scholar
  31. Faith, J., Rey, F., O’Donnell, D., Karlsson, M., McNulty, N.P., Kallstrom, G., Goodman, A.L., and Gordon, J.I. 2010. Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME J. 4, 1094–1998.PubMedCentralPubMedGoogle Scholar
  32. Ferziger, J.H., Peric, M., and Leonard, A. 1997. Computational methods for fluid dynamics. Phys. Today 50, 80.Google Scholar
  33. Fuqua, W.C., Winans, S.C., and Greenberg, E.P. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275.PubMedCentralPubMedGoogle Scholar
  34. Gevers, D., Kugathasan, S., Denson, L.A., Vázquez-Baeza, Y., Van Treuren, W., Ren, B., Schwager, E., Knights, D., Song, S.J., Yassour, M., et al. 2014. The treatment-naive microbiome in newonset Crohn’s disease. Cell Host Microbe 15, 382–392.PubMedCentralPubMedGoogle Scholar
  35. Gore, J., Youk, H., and van Oudenaarden, A. 2009. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256.PubMedCentralPubMedGoogle Scholar
  36. Gudelj, I., Weitz, J.S., Ferenci, T., Claire Horner-Devine, M., Marx, C.J., Meyer, J.R., and Forde, S.E. 2010. An integrative approachto understanding microbial diversity: from intracellular mechanisms to community structure. Ecol. Lett. 13, 1073–1084.PubMedCentralPubMedGoogle Scholar
  37. Hanly, T.J. and Henson, M.A. 2011. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol. Bioeng. 108, 376–385.PubMedGoogle Scholar
  38. Hanly, T.J. and Henson, M.A. 2013. Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol. Biofuels 6, 44.PubMedCentralPubMedGoogle Scholar
  39. Hanly, T.J., Urello, M., and Henson, M.A. 2012. Dynamic flux balance modeling of S. cerevisiae and E. coli cocultures for efficient consumption of glucose/xylose mixtures. Appl. Microbiol. Biotechnol. 93, 2529–2541.PubMedGoogle Scholar
  40. Harcombe, W.R., Riehl, W.J., Dukovski, I., Granger, B.R., Betts, A., Lang, A.H., Bonilla, G., Kar, A., Leiby, N., Mehta, P., et al. 2014. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115.PubMedCentralPubMedGoogle Scholar
  41. Heim, R., Cubitt, A., and Tsien, R. 1995. Improved green fluorescence. Nature 373, 663–664.PubMedGoogle Scholar
  42. Heinken, A., Sahoo, S., Fleming, R.M.T., and Thiele, I. 2013. Systemslevel characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4, 28–40.PubMedCentralPubMedGoogle Scholar
  43. Henson, M.A. and Hanly, T.J. 2014. Dynamic flux balance analysis for synthetic microbial communities. IET Syst. Biol. 8, 214–229.PubMedGoogle Scholar
  44. Hillesland, K.L. and Stahl, D.A. 2010. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl. Acad. Sci. USA 107, 2124–2129.PubMedCentralPubMedGoogle Scholar
  45. Hong, S.H., Hegde, M., Kim, J., Wang, X., Jayaraman, A., and Wood, T.K. 2012. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nat. Commun. 3, 613.PubMedCentralPubMedGoogle Scholar
  46. Hosoda, K., Suzuki, S., Yamauchi, Y., Shiroguchi, Y., Kashiwagi, A., Ono, N., Mori, K., and Yomo, T. 2011. Cooperative adaptation to establishment of a synthetic bacterial mutualism. PLoS One 6, e17105.Google Scholar
  47. Hosoda, K. and Yomo, T. 2014. Designing symbiosis. Bioeng. Bugs. 2, 338–341.Google Scholar
  48. Hu, B., Du, J., Zou, R., and Yuan, Y. 2010. An environment-sensitive synthetic microbial ecosystem. PLoS One 5, e10619.Google Scholar
  49. Huse, S.M., Dethlefsen, L., Huber, J.A., Welch, D.M., Relman, D.A., and Sogin, M.L. 2008. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 4, e1000255.Google Scholar
  50. Imelfort, M., Parks, D., Woodcroft, B.J., Dennis, P., Hugenholtz, P., and Tyson, G.W. 2014. GroopM: An automated tool for the recovery of population genomes from related metagenomes. PeerJ. 2, e603.Google Scholar
  51. Jiménez, D.J., Korenblum, E., and van Elsas, J.D. 2014. Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Appl. Microbiol. Biotechnol. 98, 2789–2803.PubMedGoogle Scholar
  52. Kashtan, N., Roggensack, S.E.S., Rodrigue, S., Thompson, J.W., Biller, S.J., Coe, A., Ding, H., Marttinen, P., Malmstrom, R.R., Stocker, R., et al. 2014. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–421.PubMedGoogle Scholar
  53. Kerner, A., Park, J., Williams, A., and Lin, X.N. 2012. A programmable Escherichia coli consortium via tunable symbiosis. PLoS One 7, e34032.Google Scholar
  54. Kerr, B., Riley, M., Feldman, M., and Bohannan, B. 2002. Local dispersal promotes biodiversity in a real-life game of rock-paperscissors. Nature 418, 171–174.PubMedGoogle Scholar
  55. Kihara, K., Mori, K., Suzuki, S., Ono, N., Furusawa, C., and Yomo, T. 2009. Global/temporal gene expression analysis of Escherichia coli in the early stages of symbiotic relationship development with the cellular slime mold Dictyostelium discoideum. Biosystems 96, 141–164.PubMedGoogle Scholar
  56. Kim, H.J., Boedicker, J.Q., Choi, J.W., and Ismagilov, R.F. 2008. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl. Acad. Sci. USA 105, 18188–18193.PubMedCentralPubMedGoogle Scholar
  57. Kim, M. and Chun, J. 2005. Bacterial community structure in kimchi, a korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103, 91–96.PubMedGoogle Scholar
  58. Klitgord, N. and Segre, D. 2010. Environments that induce synthetic microbial ecosystems. PLoS Comput. Biol. 6, e1001002.Google Scholar
  59. Köhler, T., Perron, G.G., Buckling, A., and van Delden, C. 2010. Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathog. 6, e1000883.Google Scholar
  60. Koide, T., Pang, W.L.W., and Baliga, N.S.N. 2009. The role of predictive modelling in rationally re-engineering biological systems. Nat. Rev. Microbiol. 7, 297–305.PubMedCentralPubMedGoogle Scholar
  61. Latif, H., Lerman, J.A., Portnoy, V.A., Tarasova, Y., Nagarajan, H., Schrimpe-Rutledge, A.C., Smith, R.D., Adkins, J.N., Lee, D.H., Qiu, Y., et al. 2013. The genome organization of Thermotoga maritima reflects its lifestyle. PLoS Genet. 9, e1003485.Google Scholar
  62. Lay-Son, M. and Drakides, C. 2008. New approach to optimize operational conditions for the biological treatment of a highstrength thiocyanate and ammonium waste: pH as key factor. Water Res. 42, 774–780.PubMedGoogle Scholar
  63. Lazupone, C.A., Li, M., Campbell, T.B., Flores, S.C., Linderman, D., Gebert, M.J., Knight, R., Fontenot, A.P., and Palmer, B.E. 2013. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe 14, 1–21.Google Scholar
  64. Lin, H., Wang, B., Zhuang, R., Zhou, Q., and Zhao, Y. 2011. Artificial construction and characterization of a fungal consortium that produces cellulolytic enzyme system with strong wheat straw saccharification. Bioresour. Technol. 102, 10569–10576.PubMedGoogle Scholar
  65. Ma, Q., Zhou, J., Zhang, W., Meng, X., Sun, J., and Yuan, Y.J. 2011. Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C. PLoS One 6, e26108.Google Scholar
  66. Ma, Q., Zou, Y., Lv, Y., Song, H., and Yuan, Y.J. 2014. Comparative proteomic analysis of experimental evolution of the Bacillus cereus-Ketogulonicigenium vulgare co-culture. PLoS One 9, e91789.Google Scholar
  67. MacLean, R.C. and Gudelj, I. 2006. Resource competition and social conflict in experimental populations of yeast. Nature 441, 498–501.PubMedGoogle Scholar
  68. Mahadevan, R., Edwards, J.S., and Doyle, F.J. 2002. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83, 1331–1340.PubMedCentralPubMedGoogle Scholar
  69. Maleke, M., Williams, P., Castillo, J., Botes, E., Ojo, A., DeFlaun, M., and van Heerden, E. 2014. Optimization of a bioremediation system of soluble uranium based on the biostimulation of an indigenous bacterial community. Environ. Sci. Pollut. Res. Int. DOI  10.1007/s11356-014-3980-7.Google Scholar
  70. Marmeisse, R., Bailly, J., Damon, C., Lehembre, F., Lemaire, M., Wésolowski-Louvel, M., and Fraissinet-Tachet, L. 2011. Soil eukaryotic diversity: A metatranscriptomic approach, pp. 597–602.In Handb. Mol. Microb. Ecol. I Metagenomics Complement. Approaches. Google Scholar
  71. McCook, L. 1994. Understanding ecological community succession: causal models and theories, a review. Vegetatio. 110, 115–147.Google Scholar
  72. Minty, J.J., Singer, M.E., Scholz, S.A., Bae, C.H., Ahn, J.H., Foster, C.E., Liao, J.C., and Lin, X.N. 2013. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc. Natl. Acad. Sci. USA 110, 14592–14597.PubMedCentralPubMedGoogle Scholar
  73. Momeni, B., Waite, A.J., and Shou, W. 2013. Spatial self-organization favors heterotypic cooperation over cheating. Elife. 2, e00960.Google Scholar
  74. Monk, J.M., Charusanti, P., Aziz, R.K., Lerman, J.A., Premyodhin, N., Orth, J.D., Feist, A.M., and Palsson, B.Ø. 2013. Genome-scalemetabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc. Natl. Acad. Sci. USA 110, 20338–20343.PubMedCentralPubMedGoogle Scholar
  75. Morgan-Sagastume, F., Larsen, P., Nielsen, J.L., and Nielsen, P.H. 2008. Characterization of the loosely attached fraction of activated sludge bacteria. Water Res. 42, 843–854.PubMedGoogle Scholar
  76. Nagarajan, H., Embree, M., Rotaru, A., Shrestha, P.M., Feist, A.M., Palsson, B.Ø., Lovley, D.R., and Zengler, K. 2013. Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association. Nat. Commun. 4, 1–10.Google Scholar
  77. NCBI. 2014. National Center for Biotechnology Information, NCBI. Genome.Google Scholar
  78. Nützmann, H., Reyes-Dominguez, Y., Scherlach, K., Schroeckh, V., Horn, F., Gacek, A., Schumann, J., Hertweck, C., Strauss, J., and Brakhage, A.A. 2011. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires saga/ada-mediated histone acetylation. Proc. Natl. Acad. Sci. USA 108, 14282–14287.PubMedCentralPubMedGoogle Scholar
  79. O’Brien, E.J., Lerman, J.A., Chang, R.L., Hyduke, D.R., and Palsson, B.Ø. 2013. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst. Biol. 9, 693.PubMedCentralPubMedGoogle Scholar
  80. Ola, A.R.B., Thomy, D., Lai, D., and Proksch, P. 2013. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J. Nat. Prod. 76, 2094–2099.PubMedGoogle Scholar
  81. Overbeek, R., Begley, T., Butler, R.M., Choudhuri, J.V., Chuang, H.Y., Cohoon, M., de Crécy-Lagard, V., Diaz, N., Disz, T., Edwards, R., et al. 2005. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691–5702.PubMedCentralPubMedGoogle Scholar
  82. Poretsky, R.S., Bano, N., Buchan, A., LeCleir, G., Kleikemper, J., Pickering, M., Pate, W.M., Moran, M.A., and Hollibaugh, J.T. 2005. Analysis of microbial gene transcripts in environmental samples. Appl. Environ. Microbiol. 71, 4121–4126.PubMedCentralPubMedGoogle Scholar
  83. Qiu, Y., Cho, B.K., Park, Y.S., Lovley, D., Palsson, B., and Zengler, K. 2010. Structural and operational complexity of the Geobacter sulfurreducens genome. Genome Res. 20, 1304–1311.PubMedCentralPubMedGoogle Scholar
  84. Raman, K. and Chandra, N. 2009. Flux balance analysis of biological systems: Applications and challenges. Brief. Bioinform. 10, 435–449.PubMedGoogle Scholar
  85. Relman, D.A. 2013. Restoration of the gut microbial habitat as a disease therapy. Nat. Biotechnol. 31, 35–37.PubMedGoogle Scholar
  86. Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Alexis, E., Kau, A.L., Griffin, N.W., Lombard, V., Henrissat, B., Bain, J.R., et al. 2013. Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science 341, 1–22.Google Scholar
  87. Schellenberger, J., Que, R., Fleming, R.M.T., Thiele, I., Orth, J.D., Feist, A.M., Zielinski, D.C., Bordbar, A., Lewis, N.E., Rahmanian, S., et al. 2011. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0. Nat. Protoc. 6, 1290–1307.PubMedCentralPubMedGoogle Scholar
  88. Schroeckh, V., Scherlach, K., Nutzmann, H., Shelest, E., Schmidtheck, W., Schuemann, J., Martin, K., Hertweck, C., and Brakhage, A.A. 2009. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 106, 14558–14563.PubMedCentralPubMedGoogle Scholar
  89. Shong, J., Jimenez Diaz, M.R., and Collins, C.H. 2012. Towards synthetic microbial consortia for bioprocessing. Curr. Opin. Biotechnol. 23, 798–802.PubMedGoogle Scholar
  90. Shou, W., Ram, S., and Vilar, J.M.G. 2007. Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. USA 104, 1877–1882.PubMedCentralPubMedGoogle Scholar
  91. Sridharan, G.V., Choi, K., Klemashevich, C., Wu, C., Prabakaran, D., Pan, L. Bin, Steinmeyer, S., Mueller, C., Yousofshahi, M., Alaniz, R.C., et al. 2014. Prediction and quantification of bioactive microbiota metabolites in the mouse gut. Nat. Commun. 5, 5492.PubMedGoogle Scholar
  92. Stolyar, S., Van Dien, S., Hillesland, K.L., Pinel, N., Lie, T.J., Leigh, J.A., and Stahl, D.A. 2007. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3, 92.Google Scholar
  93. Summers, Z.M., Fogarty, H.E., Leang, C., Franks, A.E., Malvankar, N.S., and Lovley, D.R. 2010. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330 1413–1415.PubMedGoogle Scholar
  94. Swift, S., Throup, J.P., Williams, P., Salmond, G.P.C., and Stewart, G.S.A.B. 1996. Quorum sensing: a population-density component in the determination of bacterial phenotype. Trends Biochem. Sci. 21, 214–219.PubMedGoogle Scholar
  95. Tettelin, H., Masignani, V., Cieslewicz, M.J., Donati, C., Medini, D., Ward, N.L., Angiuoli, S.V, Crabtree, J., Jones, A.L., Durkin, A.S., et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “Pan-Genome”. Proc. Natl. Acad. Sci. USA 102, 13950–13955.PubMedCentralPubMedGoogle Scholar
  96. Tzamali, E., Poirazi, P., Tollis, I.G., and Reczko, M. 2009. Computational identification of bacterial communities. World Acad. Sci. Eng. Technol. 52, 269–275.Google Scholar
  97. Vallino, J.J. 2003. Modeling microbial consortiums as distributed metabolic networks. Biol. Bull. 204, 4–79.Google Scholar
  98. Walters, W.A., Xu, Z., and Knight, R. 2014. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223–4233.PubMedGoogle Scholar
  99. Wintermute, E.H. and Silver, P.A. 2010. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407.PubMedCentralPubMedGoogle Scholar
  100. Zengler, K. 2008. Accessing uncultivated microorganisms: from the environment to organisms and genomes and back. ASM Press, Washington, D.C., USA. Google Scholar
  101. Zengler, K. 2009. Central role of the cell in microbial ecology. Microbiol. Mol. Biol. Rev. 73, 712–729.PubMedCentralPubMedGoogle Scholar
  102. Zengler, K. and Palsson, B.O. 2012. A road map for the development of community systems (CoSy) biology. Nat. Rev. Microbiol. 10, 366–372.PubMedGoogle Scholar
  103. Zhou, C., Ontiveros-Valencia, A., Cornette de Saint Cyr, L., Zevin, A.S., Carey, S.E., Krajmalnik-Brown, R., and Rittmann, B.E. 2014. Uranium removal and microbial community in a H2-based membrane biofilm reactor. Water Res. 64, 255–264.PubMedGoogle Scholar
  104. Zhuang, K., Izallalen, M., Mouser, P., Richter, H., Risso, C., Mahadevan, R., and Lovley, D.R. 2011. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5, 305–316.PubMedCentralPubMedGoogle Scholar
  105. Zomorrodi, A.R. and Maranas, C.D. 2012. OptCom: A multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 8, e1002363.Google Scholar
  106. Zupancic, M.L., Cantarel, B.L., Liu, Z., Drabek, E.F., Ryan, K.A., Cirimotich, S., Jones, C., Knight, R., Walters, W.A., Knights, D., et al. 2012. Analysis of the gut microbiota in the old order amish and its relation to the metabolic syndrome. PLoS One 7, e43052.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of CaliforniaSan DiegoUSA

Personalised recommendations