Journal of Microbiology

, Volume 53, Issue 10, pp 702–710 | Cite as

Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains

  • Grégoire Burgé
  • Claire Saulou-Bérion
  • Marwen Moussa
  • Florent Allais
  • Violaine Athes
  • Henry-Eric Spinnler
Article

Abstract

The aims of this study is to compare the growth and glucose metabolism of three Lactobacillus reuteri strains (i.e. DSM 20016, DSM 17938, and ATCC 53608) which are lactic acid bacteria of interest used for diverse applications such as probiotics implying the production of biomass, or for the production of valuable chemicals (3-hydroxypropionaldehyde, 3-hydroxypropionic acid, 1,3-propanediol). However, the physiological diversity inside the species, even for basic metabolisms, like its capacity of acidification or glucose metabolism, has not been studied yet. In the present work, the growth and metabolism of three strains representative of the species diversity have been studied in batch mode. The strains were compared through characterization of growth kinetics and evaluation of acidification kinetics, substrate consumption and product formation. The results showed significant differences between the three strains which may be explained, at least in part, by variations in the distribution of carbon source between two glycolytic pathways during the bacterial growth: the phosphoketolase or heterolactic pathway (PKP) and the Embden-Meyerhof pathway (EMP). It was also shown that, in the context of obtaining a large amount of biomass, DSM 20016 and DSM 17938 strains were the most effective in terms of growth kinetics. The DSM 17938 strain, which shows the more significant metabolic shift from EMP to PKP when the pH decreases, is more effective for lactate production.

Keywords

Lactobacillus reuteri microbial growth acidification kinetics glucose metabolism Embden-Meyerhof pathway Phosphoketolase pathway lactate production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2015_5056_MOESM1_ESM.pdf (153 kb)
Supplementary material, approximately 154 KB.

References

  1. Ahrné, S., Nobaek, S., Jeppsson, B., Adlerberth, I., Wold, A.E., and Molin, G. 1998. The normal Lactobacillus flora of healthy human rectal and oral mucosa. J. Appl. Microbiol. 85, 88–94.CrossRefPubMedGoogle Scholar
  2. Årskold, E., Lohmeier-Vogel, E., Cao, R., Roos, S., Rådstrom, P., and van Niel, E.W.J. 2008. Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis. J. Bacteriol. 190, 206–212.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Casas, I.A. and Dobrogosz, W.J. 2000. Validation of probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb. Ecol. Health Dis. 12, 247–285.Google Scholar
  4. Cotter, P.D., Hill, C., and Ross, R.P. 2005. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 3, 777–788.CrossRefPubMedGoogle Scholar
  5. Doleyres, Y., Beck, P., Vollenweider, S., and Lacroix, C. 2005. Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 68, 467–474.CrossRefPubMedGoogle Scholar
  6. Drozdzynska, A., Leja, K., and Czaczyk, K. 2011. Biotechnological production of 1.3-propanediol from crude glycerol. J. Biotechnol. Comput. Biol. Bionanotechnol. 92, 92–100.Google Scholar
  7. Frese, S.A., Benson, A.K., Tannock, G.W., Loach, D.M., Kim, J., Zhang, M., Oh, P.L., Heng, N.C.K., Patil, P.B., Juge, N., et al. 2011. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet. 7, e1001314.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Garrigues, C., Loubi-re, P., Lindley, N.D., and Cocaign-Bousquet, M. 1997. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J. Bacteriol. 179, 5282–5287.PubMedCentralPubMedGoogle Scholar
  9. Garrigues, C., Mercade, M., Cocaign-Bousquet, M., Lindley, N.D., and Loubi-re, P. 2001. Regulation of pyruvate metabolism in Lac tococcus lactis depends on the imbalance between catabolism and anabolism. Biotechnol. Bioeng. 74, 108–115.CrossRefPubMedGoogle Scholar
  10. Gilliland, S.E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 87, 175–188.CrossRefGoogle Scholar
  11. Hansen, E.B. 2002. Commercial bacterial starter cultures for fermented foods of the future. Int. J. Food Microbiol. 78, 119–131.CrossRefPubMedGoogle Scholar
  12. Hugenholtz, J. and Smid, E.J. 2002. Nutraceutical production with food-grade microorganisms. Curr. Opin. Biotechnol. 13, 497–507.CrossRefPubMedGoogle Scholar
  13. Itoh, T. 1992. Functional benefits from lactic acid bacteria used in cultured milk. Anim. Sci. Technol. 63, 1276–1289.Google Scholar
  14. Jiang, X., Meng, X., and Xian, M. 2009. Biosynthetic pathways for 3-hydroxypropionic acid production. Appl. Microbiol. Biotechnol. 82, 995–1003.CrossRefPubMedGoogle Scholar
  15. Kandler, O. 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49, 209–224.CrossRefPubMedGoogle Scholar
  16. Luo, L.H., Seo, J.W., Baek, J.O., Oh, B.R., Heo, S.Y., Hong, W., Kim, D.H., and Kim, C.H. 2011. Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol. Appl. Microbiol. Biotechnol. 89, 697–703.CrossRefPubMedGoogle Scholar
  17. L-thi-Peng, Q., Dileme, F.B., and Puhan, Z. 2002a. Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 59, 289–296.CrossRefGoogle Scholar
  18. L-thi-Peng, Q., Sch- rer, S., and Puhan, Z. 2002b. Production and stability of 3-hydroxypropionaldehyde in Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 60, 73–80.CrossRefGoogle Scholar
  19. Morita, H., Toh, H., Fukuda, S., Horikawa, H., and Oshima, K. 2008. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res. 15, 151–161.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Picque, D., Perret, B., Latrille, E., and Corrieu, G. 1992. Caract-risation et classification de bact-ries lactiques - partir de la mesure de leur cin-tique d-acidification. Lebensmittel Wissenschaft und Technologie. 25, 181–186.Google Scholar
  21. Pieterse, B., Leer, R.J., Schuren, F.H.J., and van der Werf, M.J. 2005. Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151, 3881–3894.CrossRefPubMedGoogle Scholar
  22. Rodriguez, C., Rimaux, T., Fornaguera, M.J., Vrancken, G., Font de Valdez, G., De Vuyst, L., and Mozzi, F. 2012. Mannitol production by heterofermentative Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations. Appl. Microbiol. Biotechnol. 93, 2519–2527.CrossRefPubMedGoogle Scholar
  23. Rosander, A., Connolly, E., and Roos, S. 2008. Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl. Environ. Microbiol. 74, 6032–6040.PubMedCentralCrossRefPubMedGoogle Scholar
  24. R-tti, D.P., Lacroix, C., Jeremic, T., Mathis, M., Die, A., and Vollenweider, S. 2011. Development of a reversible binding process for in situ removal of 3-hydroxypropionaldehyde during biotechnological conversion of glycerol. Biochem. Eng. J. 55, 176–184.CrossRefGoogle Scholar
  25. Savino, F., Pelle, E., Palumeri, E., Oggero, R., and Miniero, R. 2007. Lactobacillus reuteri (American type culture collection strain 55730) versus simethicone in the treatment of infantile colic: A prospective randomized study. Pediatrics 119, 124–130.CrossRefGoogle Scholar
  26. Spinnler, H.E. and Corrieu, G. 1989. Automatic method to quantify starter activity based on pH measurement. J. Dairy Res. 56, 755–764.CrossRefGoogle Scholar
  27. Stanton, C., Ross, R.P., Fitzgerald, G.F., and Van Sinderen, D. 2005. Fermented functional foods based on probiotics and their biogenic metabolites. Curr. Opin. Biotechnol. 16, 198–203.CrossRefPubMedGoogle Scholar
  28. Stevens, M.J.A., Vollenweider, S., Meile, L., and Lacroix, C. 2011. 1.3 propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production. Microb. Cell Fact. 10, 61–69.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Talarico, T.L., Axelsson, L.T., Novotny, J., Fiuzat, M., and Dobrogosz, W.J. 1990. Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1.3 propanediol: NAD+ oxidoreductase. Appl. Environ. Microbiol. 56, 1195–1197.PubMedCentralPubMedGoogle Scholar
  30. Talarico, T.L., Casas, I.A., Chung, T.C., and Dobrogosz, W.J. 1988. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother. 32, 1854–1858.PubMedCentralCrossRefPubMedGoogle Scholar
  31. van Niel, E.W.J., Larsson, C.U., Lohmeier-Vogel, E.M., and R-dstr-m, P. 2012. The potential of biodetoxification activity as a probiotic property of Lactobacillus reuteri. Internat. J. Food Microbiol. 152, 206–210.CrossRefGoogle Scholar
  32. Vollenweider, S., Grassi, G., K-nig, I., and Puhan, Z. 2003. Purification and structural characterization of 3-hydroxypropionaldehyde and its derivatives. J. Agricult. Food Chem. 51, 3287–3293.CrossRefGoogle Scholar
  33. Werner, S., Diekert, G., and Schuster, S. 2010. Revisiting the thermodynamic theory of optimal ATP stoichiometries by analysis of various ATP-producing metabolic pathways. J. Mol. Evol. 71, 346–355.CrossRefPubMedGoogle Scholar
  34. Zwietering, M.H., Jongenburger, I., Rombouts, F.M., and van-t Riet, K. 1990. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881.PubMedCentralPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Grégoire Burgé
    • 1
    • 2
    • 3
  • Claire Saulou-Bérion
    • 2
    • 3
  • Marwen Moussa
    • 2
    • 3
  • Florent Allais
    • 1
    • 2
    • 3
  • Violaine Athes
    • 2
    • 3
  • Henry-Eric Spinnler
    • 2
    • 3
  1. 1.Chaire Agro-Biotechnologies Industrielles (ABI) - AgroParisTechReimsFrance
  2. 2.AgroParisTechUMR 782 Génie et Microbiologie des Procédés Alimentaires (GMPA)Thiverval-GrignonFrance
  3. 3.INRAUMR 782 Génie et Microbiologie des Procédés Alimentaires (GMPA)Thiverval-GrignonFrance

Personalised recommendations