Journal of Microbiology

, Volume 53, Issue 9, pp 588–591 | Cite as

Paenibacillus insulae sp. nov., isolated from soil

  • Sung-Jun Cho
  • Sung-Heun Cho
  • Tae-Su Kim
  • Suhk-Hwan Park
  • Seung-Bum Kim
  • Geon-Hyoung Lee
Article

Abstract

A Gram-stain-positive, motile, endospore-forming, and strictly aerobic rod-shaped bacterium designated DS80T was isolated from an island soil. The strain DS80T grew at temperatures between 15 and 40°C (optimum = 30°C) and at pH values ranging from 5.0 to 9.0 (optimum = 7.0). The phylogenetic analysis based on the comparisons of the 16S rRNA gene sequences showed that the isolate was affiliated to the genus Paenibacillus and was mostly related to Paenibacillus assamensis GPTSA11T (with the sequence similarity of 96.33%) and Paenibacillus urinalis 5402403T(95.48%). The G+C content of the genomic DNA was 44.0 mol% and the major fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0, and C16:1 ω11c. Strain DS80T contained MK-7 as the major menaquinone, and phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol as the major polar lipids. The peptidoglycan contained a major amount of meso-diaminopimelic acid. The chemotaxonomic profile of strain DS80T was consistent with that of Paenibacillus. However, the phenotypic properties clearly separated the strain from other species of the genus. Accordingly, a new species, Paenibacillus insulae sp. nov., is proposed (type strain =DS80T =JCM 17278T =KCTC 13833T).

Keywords

Paenibacillus insulae Gram-positive Dokdo Island 16S rRNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2015_4610_MOESM1_ESM.pdf (533 kb)
Supplementary material, approximately 534 KB.

References

  1. Ash, C., Priest, F.G., and Collins, M.D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253–260.CrossRefPubMedGoogle Scholar
  2. Barrow, G.I. and Feltham, R.K.A. 1993. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rded. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  3. Cochrane, S.A. and Vederas, J.C. 2014. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med. Res. Rev. doi: 10.1002/med.21321.Google Scholar
  4. Collins, M.D. and Jones, D. 1980. Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2,4-diamino butyric acid (DAP). J. Appl. Bacteriol. 48, 459–470.CrossRefGoogle Scholar
  5. De Vos, P., Ludwig, W., Schleifer, Kh., and Whitman, W.B. 2009. Family IV. Paenibacillaceae fam. nov. Bergey’s Manual of Systematic Bacteriology, 2nd edn, Vol. 3, p. 269. In De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F., Schleifer, Kh., and Whitman, W.B. (eds.) Springer, New York, USA.Google Scholar
  6. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefPubMedGoogle Scholar
  7. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  8. Kim, M., Oh, H.S., Park, S.C., and Chun, J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64, 346–351.CrossRefPubMedGoogle Scholar
  9. Kates, M. 1986. Techniques of Lipidology, 2nded. Elsevier, Amsterdam, Netherlands.Google Scholar
  10. Lal, S. and Tabacchioni, S. 2009. Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Ind. J. Microbiol. 49, 2–10.CrossRefGoogle Scholar
  11. Lane, D.J. 1991. 16S/23S rRNA sequencing. pp. 115–175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acid Techniques in Bacterial Systematics, Wiley, New York, USA.Google Scholar
  12. Lee, F.L., Kuo, H.P., Tai, C.J., Yokota, A., and Lo, C.C. 2007. Paenibacillus taiwanensis sp. nov., isolated from soil in Taiwan. Int. J. Syst. Evol. Microbiol. 57, 1351–1354.CrossRefPubMedGoogle Scholar
  13. Marmur, J. and Doty, P. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5, 109–118.CrossRefPubMedGoogle Scholar
  14. Montes, J.M., Mercadé, E., Bozal, N., and Guinea, J. 2004. Paenibacillus antarcticus sp. Nov., a novel psychrotolerant organism from the Antarctic environment. Int. J. Syst. Evol. Microbiol. 54, 1521–1526.CrossRefPubMedGoogle Scholar
  15. Priest, F.G. 2009. Genus I. Paenibacillus. pp. 269–295. In De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, Kh., and Whitman, W.B. (eds.), Bergey’s Manual of Systematic Bacteriology, 2nded. Springer, New York, USA.Google Scholar
  16. Roux, V., Fenner, L., and Raoult, D. 2008. Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. Int. J. Syst. Evol. Microbiol. 58, 682–687.CrossRefPubMedGoogle Scholar
  17. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  18. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K., and Komagata, K. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47, 289–298.CrossRefPubMedGoogle Scholar
  19. Stackebrandt, E. and Ebers, J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 33, 152–155.Google Scholar
  20. Staneck, J.L. and Roberts, G.D. 1974. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. J. Appl. Bacteriol. 28, 226–231.Google Scholar
  21. Takeda, M., Suzuki, I., and Koizumi, J. 2005. Paenibacillus hodogayensis sp. Nov., capable of degrading the polysaccharide produced by Sphaerotilus natans. Int. J. Syst. Evol. Microbiol. 55, 737–741.CrossRefPubMedGoogle Scholar
  22. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.CrossRefPubMedGoogle Scholar
  23. Wollum, A.G. 1982. Cultural methods for soil microorganisms, pp. 781–802. In Page, A.L. (eds.), Methods of Soil Analysis, Part 2: Chemical and microbiological properties, 2nd(ed.), American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, USA.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sung-Jun Cho
    • 1
  • Sung-Heun Cho
    • 2
  • Tae-Su Kim
    • 2
  • Suhk-Hwan Park
    • 1
  • Seung-Bum Kim
    • 2
  • Geon-Hyoung Lee
    • 1
  1. 1.Department of BiologyKunsan National UniversityGunsanRepublic of Korea
  2. 2.Deptartment of Microbiology and Molecular BiologyChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations