Advertisement

Journal of Microbiology

, Volume 53, Issue 9, pp 633–642 | Cite as

Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression

  • Jingyuan Guan
  • Xiao Xiao
  • Shengjuan Xu
  • Fen Gao
  • Jianbo Wang
  • Tietao Wang
  • Yunhong Song
  • Junfeng Pan
  • Xihui ShenEmail author
  • Yao WangEmail author
Article

Abstract

RpoS (σS), the stationary phase/stress σ factor, controls the expression of a large number of genes involved in cellular responses to a variety of stresses. However, the role of RpoS appears to differ in different bacteria. While RpoS is an important regulator of flagellum biosynthesis, it is associated with biofilm development in Edwardsiella tarda. Biofilms are dense communities formed by bacteria and are important for microbe survival under unfavorable conditions. The type VI secretion system (T6SS) discovered recently is reportedly associated with several phenotypes, ranging from biofilm formation to stress sensing. For example, Vibrio anguillarum T6SS was proposed to serve as a sensor for extracytoplasmic signals and modulates RpoS expression and stress response. In this study, we investigated the physiological roles of RpoS in Yersinia pseudotuberculosis, including bacterial survival under stress conditions, flagella formation, biofilm development and T6SS expression. We found that RpoS is important in resistance to multiple stressors–including H2O2, acid, osmotic and heat shock–in Y. pseudotuberculosis. In addition, our study showed that RpoS not only modulates the expression of T6SS but also regulates flagellum formation by positively controlling the flagellar master regulatory gene flhDC, and affects the formation of biofilm on Caenorhabditis elegans by regulating the synthesis of exopolysaccharides. Taken together, these results show that RpoS plays a central role in cell fitness under several adverse conditions in Y. pseudotuberculosis.

Keywords

Yersinia pseudotuberculosis RpoS T6SS stress resistance motility biofilm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J.L. and McLean, R.J. 1999. Impact of rpoS deletion on Escherichia coli biofilms. Appl. Environ. Microbiol. 65, 4285–4287.PubMedCentralPubMedGoogle Scholar
  2. Atkinson, S., Chang, C.Y., Patrick, H.L., Buckley, C.M., Wang, Y., Sockett, R.E., Camara, M., and Williams, P. 2008. Functional interplay between the Yersinia pseudotuberculosis ypsRI and ytbRI quorum sensing systems modulates swimming motility by controlling expression of flhDC and fliA. Mol. Microbiol. 69, 137–151.CrossRefPubMedGoogle Scholar
  3. Atkinson, S., Goldstone, R.J., Joshua, G.W., Chang, C.Y., Patrick, H.L., Camara, M., Wren, B.W., and Williams, P. 2011. Biofilm development on Caenorhabditis elegans by Yersinia is facilitated by quorum sensing-dependent repression of type III secretion. PLoS Pathog. 7, e1001250.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Atkinson, S., Throup, J.P., Stewart, G.S., and Williams, P. 1999. A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol. Microbiol. 33, 1267–1277.CrossRefPubMedGoogle Scholar
  5. Castanie-Cornet, M.P., Penfound, T.A., Smith, D., Elliott, J.F., and Foster, J.W. 1999. Control of acid resistance in Escherichia coli. J. Bacteriol. 181, 3525–3535.PubMedCentralPubMedGoogle Scholar
  6. Corona-Izquierdo, F.P. and Membrillo-Hernandez, J. 2002. A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiol. Lett. 211, 105–110.CrossRefPubMedGoogle Scholar
  7. Ding, L., Wang, Y., Hu, Y., Atkinson, S., Williams, P., and Chen, S. 2009. Functional characterization of FlgM in the regulation of flagellar synthesis and motility in Yersinia pseudotuberculosis. Microbiology 155, 1890–1900.CrossRefPubMedGoogle Scholar
  8. Doherty, D., Leigh, J.A., Glazebrook, J., and Walker, G.C. 1988. Rhizobium meliloti mutants that overproduce the R. meliloti acidic calcofluor-binding exopolysaccharide. J. Bacteriol. 170, 4249–4256.PubMedCentralPubMedGoogle Scholar
  9. Dong, T. and Schellhorn, H.E. 2009. Control of RpoS in global gene expression of Escherichia coli in minimal media. Mol. Genet. Genomics 281, 19–33.CrossRefPubMedGoogle Scholar
  10. Dong, T. and Schellhorn, H.E. 2010. Role of RpoS in virulence of pathogens. Infect. Immun. 78, 887–897.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Donlan, R.M. and Costerton, J.W. 2002. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Drace, K. and Darby, C. 2008. The hmsHFRS operon of Xenorhabdus nematophila is required for biofilm attachment to Caenorhabditis elegans. Appl. Environ. Microbiol. 74, 4509–4515.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Farewell, A., Kvint, K., and Nystrom, T. 1998. UspB, a new sigmaSregulated gene in Escherichia coli which is required for stationaryphase resistance to ethanol. J. Bacteriol. 180, 6140–6147.PubMedCentralPubMedGoogle Scholar
  14. Fazli, M., Almblad, H., Rybtke, M.L., Givskov, M., Eberl, L., and Tolker-Nielsen, T. 2014. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ. Microbiol. 16, 1961–1981.CrossRefPubMedGoogle Scholar
  15. Goldova, J., Ulrych, A., Hercik, K., and Branny, P. 2011. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence. BMC Genomics 12, 437.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Gottesman, S., Trisler, P., and Torres-Cabassa, A. 1985. Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: Characterization of three regulatory genes. J. Bacteriol. 162, 1111–1119.PubMedCentralPubMedGoogle Scholar
  17. Gueguen, E., Durand, E., Zhang, X.Y., d’Amalric, Q., Journet, L., and Cascales, E. 2013. Expression of a type VI secretion system is responsive to envelope stresses through the OmpR transcriptional activator. PLoS One 8, e66615.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Hengge-Aronis, R. 2002. Recent insights into the general stress response regulatory network in Escherichia coli. J. Mol. Microbiol. Biotechnol. 4, 341–346.PubMedGoogle Scholar
  19. Heroven, A.K. and Dersch, P. 2006. RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis. Mol. Microbiol. 62, 1469–1483.CrossRefPubMedGoogle Scholar
  20. Hood, R.D., Singh, P., Hsu, F., Guvener, T., Carl, M.A., Trinidad, R.R., Silverman, J.M., Ohlson, B.B., Hicks, K.G., Plemel, R.L., et al. 2010. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Ishikawa, T., Sabharwal, D., Bröms, J., Milton, D.L., Sjöstedt, A., Uhlin, B.E., and Wai, S.N. 2012. Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect. Immun. 80, 575–584.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Joshua, G.W.P. 2003. A Caenorhabditis elegans model of Yersinia infection: Biofilm formation on a biotic surface. Microbiology 149, 3221–3229.CrossRefPubMedGoogle Scholar
  23. Lacour, S. and Landini, P. 2004. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: Function of sigmaS-dependent genes and identification of their promoter sequences. J. Bacteriol. 186, 7186–7195.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Landini, P., Egli, T., Wolf, J., and Lacour, S. 2014. SigmaS, a major player in the response to environmental stresses in Escherichia coli: Role, regulation and mechanisms of promoter recognition. Environ. Microbiol. Reports 6, 1–13.CrossRefGoogle Scholar
  25. Lee, S.J. and Gralla, J.D. 2001. Sigma38 (RpoS) RNA polymerase promoter engagement via -10 region nucleotides. J. Biol. Chem. 276, 30064–30071.CrossRefPubMedGoogle Scholar
  26. Loewen, P.C. and Hengge-Aronis, R. 1994. The role of the sigma factor sigma S (katF) in bacterial global regulation. Annu. Rev. Microbiol. 48, 53–80.CrossRefPubMedGoogle Scholar
  27. Miller, J.H. 1992. A short course in bacterial genetics: A laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA.Google Scholar
  28. Packiavathy, I.A., Priya, S., Pandian, S.K., and Ravi, A.V. 2014. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from curcuma longa. Food Chem. 148, 453–460.CrossRefPubMedGoogle Scholar
  29. Park, S.J. and Gunsalus, R.P. 1995. Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: Role of the arcA, fnR, and soxR gene products. J. Bacteriol. 177, 6255–6262.PubMedCentralPubMedGoogle Scholar
  30. Peleg, A., Shifrin, Y., Ilan, O., Nadler-Yona, C., Nov, S., Koby, S., Baruch, K., Altuvia, S., Elgrably-Weiss, M., and Abe, C.M. 2005. Identification of an Escherichia coli operon required for formation of the o-antigen capsule. J. Bacteriol. 187, 5259–5266.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Perez-Montano, F., Jimenez-Guerrero, I., Del Cerro, P., Baena-Ropero, I., Lopez-Baena, F.J., Ollero, F.J., Bellogin, R., Lloret, J., and Espuny, R. 2014. The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by Quorum Sensing systems and inducing flavonoids via NodD1. PLoS One 9, e105901.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Pukatzki, S., Mc Auley, S.B., and Miyata, S.T. 2009. The type VI secretion system: Translocation of effectors and effector-domains. Curr. Opin. Microbiol. 12, 11–17.CrossRefPubMedGoogle Scholar
  33. Raczkowska, A., Skorek, K., Brzostkowska, M., Lasinska, A., and Brzostek, K. 2011. Pleiotropic effects of a Yersinia enterocolitica ompR mutation on adherent-invasive abilities and biofilm formation. FEMS Microbiol. Lett. 321, 43–49.CrossRefPubMedGoogle Scholar
  34. Records, A.R. 2011. The type VI secretion system: A multipurpose delivery system with a phage-like machinery. Mol. Plant Microbe Interact. 24, 751–757.CrossRefPubMedGoogle Scholar
  35. Sayed, A.K., Odom, C., and Foster, J.W. 2007. The Escherichia coli AraC-family regulators gadX and gadW activate gadE, the central activator of glutamate-dependent acid resistance. Microbiology 153, 2584–2592.CrossRefPubMedGoogle Scholar
  36. Schellhorn, H.E. and Stones, V.L. 1992. Regulation of katF and katE in Escherichia coli k-12 by weak acids. J. Bacteriol. 174, 4769–4776.PubMedCentralPubMedGoogle Scholar
  37. Schuster, M., Hawkins, A.C., Harwood, C.S., and Greenberg, E.P. 2004. The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol. Microbiol. 51, 973–985.CrossRefPubMedGoogle Scholar
  38. Sommerfeldt, N., Possling, A., Becker, G., Pesavento, C., Tschowri, N., and Hengge, R. 2009. Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli. Microbiology 155, 1318–1331.CrossRefPubMedGoogle Scholar
  39. Svensson, S.L., Pryjma, M., and Gaynor, E.C. 2014. Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni. PLoS One 9, e106063.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Tian, Y., Wang, Q., Liu, Q., Ma, Y., Cao, X., and Zhang, Y. 2008. Role of RpoS in stress survival, synthesis of extracellular autoinducer 2, and virulence in Vibrio alginolyticus. Arch. Microbiol. 190, 585–594.CrossRefPubMedGoogle Scholar
  41. Tribelli, P.M., Hay, A.G., and Lopez, N.I. 2013. The global anaerobic regulator Anr, is involved in cell attachment and aggregation influencing the first stages of biofilm development in Pseudomonas extremaustralis. PLoS One 8, e76685.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Uchiyama, J., Nobue, Y., Zhao, H., Matsuzaki, H., Nagahama, H., Matsuoka, S., Matsumoto, K., and Hara, H. 2010. Involvement of sigmaS accumulation in repression of the flhDC operon in acidic phospholipid-deficient mutants of Escherichia coli. Microbiology 156, 1650–1660.CrossRefPubMedGoogle Scholar
  43. Wang, X., Preston, J.F., and Romeo, T. 2004. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J. Bacteriol. 186, 2724–2734.PubMedCentralCrossRefPubMedGoogle Scholar
  44. Weber, B., Hasic, M., Chen, C., Wai, S.N., and Milton, D.L. 2009. Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ. Microbiol. 11, 3018–3028.CrossRefPubMedGoogle Scholar
  45. Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S., and Greenberg, E.P. 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864.CrossRefPubMedGoogle Scholar
  46. Xu, S., Peng, Z., Cui, B., Wang, T., Song, Y., Zhang, L., Wei, G., Wang, Y., and Shen, X. 2014a. FliS modulates FlgM activity by acting as a non-canonical chaperone to control late flagellar gene expression, motility and biofilm formation in Yersinia pseudotuberculosis. Environ. Microbiol. 16, 1090–1104.CrossRefPubMedGoogle Scholar
  47. Xu, T., Su, Y., Xu, Y., He, Y., Wang, B., Dong, X., Li, Y., and Zhang, X.H. 2014b. Mutations of flagellar genes fliC12, fliA and flhDC of Edwardsiella tarda attenuated bacterial motility, biofilm formation and virulence to fish. J. Appl. Microbiol. 116, 236–244.CrossRefPubMedGoogle Scholar
  48. Yan, Q., Wu, X.G., Wei, H.L., Wang, H.M., and Zhang, L.Q. 2009. Differential control of the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24 by sigma factor RpoS and the GacS/GacA two-component regulatory system. Microbiol. Res. 164, 18–26.CrossRefPubMedGoogle Scholar
  49. Young, G.M., Smith, M.J., Minnich, S.A., and Miller, V.L. 1999. The Yersinia enterocolitica motility master regulatory operon, FlhDC, is required for flagellin production, swimming motility, and swarming motility. J. Bacteriol. 181, 2823–2833.PubMedCentralPubMedGoogle Scholar
  50. Zeth, K. 2012. Dps biomineralizing proteins: Multifunctional architects of nature. Biochem. J. 445, 297–311.CrossRefPubMedGoogle Scholar
  51. Zhang, W., Wang, Y., Song, Y., Wang, T., Xu, S., Peng, Z., Lin, X., Zhang, L., and Shen, X. 2013. A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ. Microbiol. 15, 557–569.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jingyuan Guan
    • 1
    • 2
  • Xiao Xiao
    • 3
  • Shengjuan Xu
    • 1
    • 2
  • Fen Gao
    • 1
    • 3
  • Jianbo Wang
    • 1
    • 2
  • Tietao Wang
    • 3
  • Yunhong Song
    • 3
  • Junfeng Pan
    • 1
    • 2
  • Xihui Shen
    • 1
    • 3
    Email author
  • Yao Wang
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYangling, ShaanxiP. R. China
  2. 2.Department of Biochemistry and Molecular Biology, College of Life SciencesNorthwest A&F UniversityYangling, ShaanxiP. R. China
  3. 3.Department of Microbiology, College of Life SciencesNorthwest A&F UniversityYangling, ShaanxiP. R. China

Personalised recommendations