Journal of Microbiology

, Volume 52, Issue 9, pp 721–728 | Cite as

Urban microbiomes and urban ecology: How do microbes in the built environment affect human sustainability in cities?

  • Gary M. KingEmail author


Humans increasingly occupy cities. Globally, about 50% of the total human population lives in urban environments, and in spite of some trends for deurbanization, the transition from rural to urban life is expected to accelerate in the future, especially in developing nations and regions. The Republic of Korea, for example, has witnessed a dramatic rise in its urban population, which now accounts for nearly 90% of all residents; the increase from about 29% in 1955 has been attributed to multiple factors, but has clearly been driven by extraordinary growth in the gross domestic product accompanying industrialization. While industrialization and urbanization have unarguably led to major improvements in quality of life indices in Korea and elsewhere, numerous serious problems have also been acknowledged, including concerns about resource availability, water quality, amplification of global warming and new threats to health. Questions about sustainability have therefore led Koreans and others to consider deurbanization as a management policy. Whether this offers any realistic prospects for a sustainable future remains to be seen. In the interim, it has become increasingly clear that built environments are no less complex than natural environments, and that they depend on a variety of internal and external connections involving microbes and the processes for which microbes are responsible. I provide here a definition of the urban microbiome, and through examples indicate its centrality to human function and wellbeing in urban systems. I also identify important knowledge gaps and unanswered questions about urban microbiomes that must be addressed to develop a robust, predictive and general understanding of urban biology and ecology that can be used to inform policy-making for sustainable systems.


microbiome urban public health diversity ecosystem services 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, S.D. and Martiny, J.B. 2008. Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105 Suppl 1, 11512–11519.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arango, C.P., Tank, J.L., Johnson, L.T., and Hamilton, S.K. 2008. Assimilatory uptake rather than nitrification and denitrification determines nitrogen removal patterns in streams of varying land use. Limnol. Oceanogr. 53, 2558–2572.CrossRefGoogle Scholar
  3. Armougom, F., Henry, M., Vialettes, B., Raccah, D., and Raoult, D. 2009. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS ONE 4, e7125.CrossRefGoogle Scholar
  4. Balvanera, P., Pfisterer, A.B., Buchmann, N., He, J.S., Nakashizuka, T., Raffaelli, D., and Schmid, B. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156.PubMedCrossRefGoogle Scholar
  5. Barnes, I., Duda, A., Pybus, O.G., and Thomas, M.G. 2011. Ancient urbanization predicts genetic resistance to tuberculosis. Evolution 65, 842–848.PubMedCrossRefGoogle Scholar
  6. Belimov, A.A., Dodd, I.C., Hontzeas, N., Theobald, J.C., Safronova, V.I., and Davies, W.J. 2009. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol. 181, 413–423.PubMedCrossRefGoogle Scholar
  7. Bell, T., Newman, J.A., Silverman, B.W., Turner, S.L., and Lilley, A.K. 2005. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160.PubMedCrossRefGoogle Scholar
  8. Berg, G., Mahnert, A., and Moissl-Eichinger, C. 2014. Beneficial effects of plant-associated microbes on indoor microbiomes and human health? Front Microbiol. 5, 15.PubMedPubMedCentralGoogle Scholar
  9. Bettez, N.D. and Groffman, P.M. 2012. Denitrification potential in stormwater control structures and natural riparian zones in an urban landscape. Environ. Sci. Technol. 46, 10909–10917.PubMedCrossRefGoogle Scholar
  10. Bitton, G. 2011. Wastewater microbiology, 4th ed. John Wiley and Sons, Hoboken, NJ, USA.Google Scholar
  11. Bowers, R.M., McLetchie, S., Knight, R., and Fierer, N. 2011. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 5, 601–612.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Braun, B., Böckelmann, U., Grohmann, E., and Szewzyk, U. 2006. Polyphasic characterization of the bacterial community in an urban soil profile with in situ and culture-dependent methods. Appl. Soil Ecol. 31, 267–279.CrossRefGoogle Scholar
  13. Brodie, E.L., DeSantis, T.Z., Parker, J.P.M., Zubietta, I.X., Piceno, Y.M., and Andersen, G.L. 2007. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. USA 104, 299–304.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cadenasso, M.L., Pickett, S.T., Groffman, P.M., Band, L.E., Brush, G.S., Galvin, M.F., Grove, J.M., Hagar, G., Marshall, V., McGrath, B.P., and et al. 2008. Exchanges across land-water-scape boundaries in urban systems: strategies for reducing nitrate pollution. Ann. NY Acad. Sci. 1134, 213–232.PubMedCrossRefGoogle Scholar
  15. Cai, L., Feng, J., and Zhang, T. 2014. Tracking human sewage microbiome in a municipal wastewater treatment plant. Appl. Microbiol. Technol. 98, 3317–3326.CrossRefGoogle Scholar
  16. Carvalhais, L.C., Dennis, P.G., Badri, D.V., Tyson, G.W., Vivanco, J.M., and Schenk, P.M. 2013. Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS ONE 8, e564–7.Google Scholar
  17. Chakrabarti, V. 2013. A country of cities: a manifesto for urban America, p. 251. Metropolis Books, New York, USA.Google Scholar
  18. Chen, J. and Poon, C.S. 2009. Photocatalytic cementitious materials: influence of the microstructure of cement paste on photocatalytic pollution degradation. Environ. Sci. Technol. 43, 8948–8952.PubMedCrossRefGoogle Scholar
  19. Cho, S.H., Park, H.W., and Rosenberg, D.M. 2006. The current status of asthma in Korea. J. Korean Med. Sci. 21, 181–187.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Choi, Y.J., Cho, Y.M., Park, C.K., Jang, H.C., Park, K.S., Kim, S.Y., and Lee, H.K. 2006. Rapidly increasing diabetes-related mortality with socio-environmental changes in South Korea during the last two decades. Diabetes Res. Clin. Pract. 74, 295–300.PubMedCrossRefGoogle Scholar
  21. Cordell, D., Drangert, J.O., and White, S. 2008. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change 19, 292–305.CrossRefGoogle Scholar
  22. Corsi, R.L., Kinney, K.A., and Levin, H. 2012. Microbiomes of built environments: 2011 symposium highlights and workgroup recommendations. Indoor Air 22, 171–172.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Di Gregorio, S., Barbafieri, M., Lampis, S., Sanangelantoni, A.M., Tassi, E., and Vallini, G. 2006. Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63, 293–299.PubMedCrossRefGoogle Scholar
  24. Diaz, P.I., Dupuy, A.K., Abusleme, L., Reese, B., Obergfell, C., Choquette, L., Dongari-Bagtzoglou, A., Peterson, D.E., Terzi, E., and Strausbaugh, L.D. 2012. Using high throughput sequencing to explore the biodiversity in oral bacterial communities. Mol. Oral Microbiol. 27, 182–201.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dobrowsky, P.H., De Kwaadsteniet, M., Cloete, T.E., and Khan, W. 2014. Distribution of indigenous bacterial pathogens and potential pathogens associated with roof-harvested rainwater. Appl. Environ. Microbiol. 80, 2307–2316.PubMedCrossRefGoogle Scholar
  26. Doornbos, R.F., Loon, L.C., and Bakker, P.A.H.M. 2011. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron. Sustain. Devel. 32, 227–243.CrossRefGoogle Scholar
  27. Ege, M.J., Mayer, M., Normand, A.C., Genuneit, J., Cookson, W.O., Braun-Fahrländer, C., Heederik, D., Piarroux, R., von Mutius, E., and GABRIELA Transregio 22 Study Group. 2011. Exposure to environmental microorganisms and childhood asthma. New Engl. J. Med. 364, 701–709.PubMedCrossRefGoogle Scholar
  28. Faith, J.J., Guruge, J.L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A.L., Clemente, J.C., Knight, R., Heath, A.C., Leibel, R.L., and et al. 2013. The long-term stability of the human gut microbiota. Science 341, 6141. DOI:  10.1126/science.1237439.CrossRefGoogle Scholar
  29. Faure, D., Vereecke, D., and Leveau, J.H.J. 2008. Molecular communication in the rhizosphere. Plant Soil 321, 279–303.CrossRefGoogle Scholar
  30. Feazel, L.M., Baumgartner, L.K., Peterson, K.L., Frank, D.N., Harris, J.K., and Pace, N.R. 2009. Opportunistic pathogens enriched in showerhead biofilms. Proc. Natl. Acad. Sci. USA 106, 16393–16399.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fenchel, T., King, G.M., and Blackburn, T.H. 2012. Bacterial biogeochemistry: the ecophysiology of mineral cycling, p. 303. Academic Press, London, UK.Google Scholar
  32. Fierer, N., Fierer, N., Ferrenberg, S., Flores, G.E., González, A., Kueneman, J., Legg, T., Lynch, R.C., McDonald, D., Mihaljevic, J.R., and et al. 2012. From animalcules to an ecosystem: application of ecological concepts to the human microbiome. Ann. Rev. Ecol. Evol. Syst. 43, 137–155.CrossRefGoogle Scholar
  33. Foster, S.S.D. 2001. The interdependence of groundwater and urbanisation in rapidly developing cities. Urban Water 3, 185–192.CrossRefGoogle Scholar
  34. Fujii, Y., Fujiwara, Y., Kigawa, R., Suda, T., and Suzuki, Y. 2010. Characteristics and diagnosing technology of biodegradation in wooden historical buildings: a case study on Amida-do in Higashi Hongan-ji Temple in Kyoto. World Conf Timber Engineer.Google Scholar
  35. Fujimura, K.E., Demoor, T., Rauch, M., Faruqi, A.A., Jang, S., Johnson, C.C., Boushey, H.A., Zoratti, E., Ownby, D., Lukacs, N.W., and et al. 2014. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc. Natl. Acad. Sci. USA 111, 805–810.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gerhardt, K.E., Huang, X.D., Glick, B.R., and Greenberg, B.M. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci. 176, 20–30.CrossRefGoogle Scholar
  37. Gill, S.R., Pop, M., DeBoy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., and Nelson, K.E. 2006. Metagenomic analysis of the human gut distal microbiome. Science 312, 1355–1359.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Groffman, P.M., Boulware, N.J., Zipperer, W.C., Pouyat, R.V., Band, L.E., and Colosimo, M.F. 2002. Soil nitrogen cycle processes in urban riparian zones. Environ. Sci. Technol. 36, 4547–4552.PubMedCrossRefGoogle Scholar
  39. Groffman, P.M. and Pouyat, R.V. 2009. Methane uptake in urban forests and lawns. Environ. Sci. Technol. 43, 5229–5235.PubMedCrossRefGoogle Scholar
  40. Harrison, M.D., Groffman, P.M., Mayer, P.M., Kaushal, S.S., and Newcomer, T.A. 2011. Denitrification in alluvial wetlands in an urban landscape. J. Environ. Qual. 40, 6–4.CrossRefGoogle Scholar
  41. Hassan, S. and Mathesius, U. 2012. The role of flavonoids in rootrhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J. Exp. Bot. 63, 3429–3444.PubMedCrossRefGoogle Scholar
  42. Herrera, L.K., Arroyave, C., Guiamet, P., de Saravia, S.G., and Videla, H. 2004. Biodeterioration of peridotite and other constructional materials in a building of the Colombian cultural heritage. Int. Biodeterior. Biodegrad. 54, 135–141.CrossRefGoogle Scholar
  43. Herrera, L.K. and Videla, H.A. 2004. The importance of atmospheric effects on biodeterioration of cultural heritage constructional materials. Int. Biodeterior. Biodegrad. 54, 125–134.CrossRefGoogle Scholar
  44. Hospodsky, D., Qian, J., Nazaroff, W.W., Yamamoto, N., Bibby, K., Rismani-Yazdi, H., and Peccia, J. 2012. Human occupancy as a source of indoor airborne bacteria. PLoS ONE 7, e348–7.CrossRefGoogle Scholar
  45. Hou, J., Cao, X., Song, C., and Zhou, Y. 2013. Predominance of ammonia-oxidizing archaea and nirK-gene-bearing denitrifiers among ammonia-oxidizing and denitrifying populations in sediments of a large urban eutrophic lake (Lake Donghu). Can. J. Microbiol. 59, 456–464.PubMedCrossRefGoogle Scholar
  46. Hu, S., Dong, T.S., Dalal, S.R., Wu, F., and Bissonnette, M. 2011. The microbe-derived short chain fatty acid butyrate targets miRNAdependent p21 gene expression in human colon cancer. PLoS ONE 6, e162–1.Google Scholar
  47. Illi, S., Depner, M., Genuneit, J., Horak, E., Loss, G., Strunz-Lehner, C., Büchele, G., Boznanski, A., Danielewicz, H., and Cullinan, P. 2012. Protection from childhood asthma and allergy in Alpine farm environments-the GABRIEL Advanced Studies. J. Allergy Clin. Immunol. 129, 1470–1477.PubMedCrossRefGoogle Scholar
  48. Jeong, C.H. 2001. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. J. Hydrol. 253, 194–220.CrossRefGoogle Scholar
  49. Kaye, J.P., Burke, I.C., Mosier, A.R., and Guerschman, J.P. 2004. Methane and nitrous oxide fluxes from urban soils to the atmosphere. Ecol. Appl. 14, 975–981.CrossRefGoogle Scholar
  50. Kaye, J.P., Groffman, P.M., Grimm, N.B., Baker, L.A., and Pouyat, R.V. 2006. A distinct urban biogeochemistry? Trends Ecol. Evol. 21, 192–199.PubMedCrossRefGoogle Scholar
  51. Kelley, S.T. and Dobler, S. 2011. Comparative analysis of microbial diversity in Longitarsus flea beetles (Coleoptera: Chrysomelidae). Genetica 139, 541–550.PubMedCrossRefGoogle Scholar
  52. Kelley, S.T. and Gilbert, J.A. 2013. Studying the microbiology of the indoor environment. Genome Biol. 14, 2–2.CrossRefGoogle Scholar
  53. Kembel, S.W., Meadow, J.F., O’Connor, T.K., Mhuireach, G., Northcutt, D., Kline, J., Moriyama, M., Brown, G.Z., Bohannan, B.J.M., and Green, J.L. 2014. Architectural design drives the biogeography of indoor bacterial communities. PLoS ONE 9, e870–3.CrossRefGoogle Scholar
  54. Kim, M.K. and Kim, S. 2011. Quantitative estimates of warming by urbanization in South Korea over the past 55 years (1954–2008). Atmospheric Environment 45, 5778–5783.CrossRefGoogle Scholar
  55. King, G.M., Judd, C., Kuske, C.R., and Smith, C. 2012. Analysis of stomach and gut microbiomes of the eastern oyster (Crassostrea virginica) from Coastal Louisiana, USA. PLoS ONE 7, e514–5.Google Scholar
  56. Klocker, C.A., Kaushal, S.S., Groffman, P.M., Mayer, P.M., and Morgan, R.P. 2009. Nitrogen uptake and denitrification in restored and unrestored streams in urban Maryland, USA. Aquat. Sci. 71, 411–424.CrossRefGoogle Scholar
  57. Knapp, C.W., Dodds, W.K., Wilson, K.C., O’Brien, J.M., and Graham, D.W. 2009. Spatial heterogeneity of denitrification genes in a highly homogenous urban stream. Environ. Sci. Technol. 43, 4273–4279.PubMedCrossRefGoogle Scholar
  58. Kolvenbach, B.A., Helbling, D.E., Kohler, H.P., and Corvini, P.F. 2014. Emerging chemicals and the evolution of biodegradation pathways and capacities in bacteria. Curr. Opin. Biotechnol. 27, 8–14.PubMedCrossRefGoogle Scholar
  59. Langenheder, S., Bulling, M.T., Solan, M., and Prosser, J.I. 2010. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLoS ONE 5, e108–4.CrossRefGoogle Scholar
  60. Larsen, N., Vogensen, F.K., van den Berg, F.W.J., Nielsen, D.S., Andreasen, A.S., Pedersen, B.K., Al-Soud, W.A., SØrensen, S.J., Hansen, L.H., and Jakobsen, M. 2010. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e90–5.Google Scholar
  61. Li, S., Deng, H., Rensing, C., and Zhu, Y.G. 2014. Compaction stimulates denitrification in an urban park soil using (15)N tracing technique. Environ. Sci. Pollut. Res. Int. 21, 3783–3791.PubMedCrossRefGoogle Scholar
  62. McCarty, P.L., Bae, J., and Kim, J. 2011. Wastewater treatment as a net energy producer-can this be achieved? Environ. Sci. Technol. 45, 7100–7106.PubMedCrossRefGoogle Scholar
  63. Meadow, J.F., Altrichter, A.E., Kembel, S.W., Moriyama, M., O’Connor, T.K., Womack, A.M., Brown, G.Z., Green, J.L., and Bohannan, B.J. 2014. Bacterial communities on classroom surfaces vary with human contact. Microbiome 2, 7.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Milesi, C., Running, S.W., Elvidge, C.D., Dietz, J.B., Tuttle, B.T., and Nemani, R.R. 2005. Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ. Manage. 36, 426–438.PubMedCrossRefGoogle Scholar
  65. Papida, S., Murphy, W., and May, E. 2000. Enhancement of physical weathering of building stones by microbial populations. Int. Biodeterior. Biodegrad. 46, 305–317.CrossRefGoogle Scholar
  66. Peterson, S.B., Warnecke, F., Madejska, J., McMahon, K.D., and Hugenholtz, P. 2008. Environmental distribution and population biology of Candidatus accumulibacter, a primary agent of biological phosphorus removal. Environ. Microbiol. 10, 2692–2703.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pickett, S.T., Cadenasso, M.L., Grove, J.M., Groffman, P.M., Band, L.E., Boone, C.G., Burch, W.R. Jr., Grimmond, C.S.B., Hom, J., Jenkins, J.C., and et al. 2008. Beyond urban legends: an emerging framework of urban ecology, as illustrated by the Baltimore Ecosystem Study. BioScience 58, 139–150.CrossRefGoogle Scholar
  68. Pouyat, R.V., Szlavecz, K., Yesilonis, I.D., Groffman, P.M., and Schwarz, K. 2010. Chemical, physical and biological characterization of urban soils. Agronomy Monograph. 55 doi: 10.2134/agronmonogr55.c7.
  69. Quagliarini, E., Bondioli, F., Goffredo, G.B., Cordoni, C., and Munafò, P. 2012. Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Construct. Build. Mater. 37, 51–57.CrossRefGoogle Scholar
  70. Rawls, J.F., Samuel, B.S., and Gordon, J.I. 2004. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 101, 4596–4601.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Relman, D.A., Hamburg, M.A., Choffnes, E.R., and Mack, A. 2009. Microbial evolution and co-adaptation: a tribute to the life and scientific legacies of Joshua Lederberg, p. 339. National Academies Press, Washington, DC, USA.Google Scholar
  72. Riedler, J., Braun-Fahrländer, C., Eder, W., Schreuer, M., Waser, M., Maisch, S., Carr, D., Schierl, R., Nowak, D., von Mutius, E., and ALEX Study Team. 2001. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 358, 1129–1133.PubMedCrossRefGoogle Scholar
  73. Saiz-Jimenez, C. 1997. Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buildings. Int. Biodeterior. Biodeg. 40, 225–232.CrossRefGoogle Scholar
  74. Sears, C.L. 2005. A dynamic partnership: celebrating our gut flora. Anaerobe 11, 247–251.PubMedCrossRefGoogle Scholar
  75. Seviour, R.J., Mino, T., and Onuki, M. 2003. The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol. Rev. 27, 99–127.PubMedCrossRefGoogle Scholar
  76. Tate, R.L., III. 2000. Soil microbiology, 2nd ed. John Wiley and Sons, New York, N.Y., USA.Google Scholar
  77. Thompson, C.L., Hofer, M.J., Campbell, I.L., and Holmes, A.J. 2010. Community dynamics in the mouse gut microbiota: a possible role for IRF9-regulated genes in community homeostasis. PLoS ONE 5, e103–5.Google Scholar
  78. Townsend-Small, A., Pataki, D.E., Czimczik, C.I., and Tyler, S.C. 2011. Nitrous oxide emissions and isotopic composition in urban and agricultural systems in southern California. J. Geophys. Res. 116. Doi:  10.1029/2010jg001494.
  79. Vlahov, D., Freudenberg, N., Proietti, F., Ompad, D., Quinn, A., Nandi, V., and Galea, S. 2007. Urban as a determinant of health. J. Urban Health 84, 16–26.PubMedCentralCrossRefGoogle Scholar
  80. Wang, H., Edwards, M.A., Falkinham, J.O. III, and Pruden, A. 2013. Probiotic approach to pathogen control in premise plumbin systems? A review. Environ. Sci. Technol. 47, 10117–101128.PubMedGoogle Scholar
  81. Webster, A. and May, E. 2006. Bioremediation of weathered-building stone surfaces. Trends Biotechnol. 24, 255–260.PubMedCrossRefGoogle Scholar
  82. Werner, J.J., Knights, D., Garcia, M.L., Scalfone, N.B., Smith, S., Yarasheski, K., Cummings, T.A., Beers, A.R., Knight, R., and Angenent, L.T. 2011. Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc. Natl. Acad. Sci. USA 108, 4158–4163.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K., Vos, P., Verstraete, W., and Boon, N. 2009. Initial community evenness favours functionality under selective stress. Nature 458, 623–626.PubMedCrossRefGoogle Scholar
  84. Yashiro, E., Spear, R.N., and McManus, P.S. 2011. Culture-dependent and culture-independent assessment of bacteria in the apple phyllosphere. J. Appl. Microbiol. 110, 1284–1296.PubMedCrossRefGoogle Scholar
  85. Yeager, C.M., Northup, D.E., Grow, C.C., Barns, S.M., and Kuske, C.R. 2005. Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Appl. Environ. Microbiol. 71, 2713–2722.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Yusuf, S., Reddy, S., Ounpuu, S., and Anand, S. 2001. Global burden of cardiovascular diseases: Part, I: General considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104, 2746–2753.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA

Personalised recommendations