Journal of Microbiology

, Volume 52, Issue 8, pp 667–674 | Cite as

Evaluation of the antimicrobial potency of silver nanoparticles biosynthesized by using an endophytic fungus, Cryptosporiopsis ericae PS4

Microbial Physiology and Biochemistry


In the present study, silver nanoparticles (AgNPs) with an average particle size of 5.5 ± 3.1 nm were biosynthesized using an endophytic fungus Cryptosporiopsis ericae PS4 isolated from the ethno-medicinal plant Potentilla fulgens L. The nanoparticles were characterized using UV-visible spectrophotometer, transmission electron microscopy (TEM), scanning electron microscopy (SEM), selective area electron diffraction (SAED), and energy dispersive X-ray (EDX) spectroscopy analysis. Antimicrobial efficacy of the AgNPs was analyzed singly and in combination with the antibiotic/antifungal agent chloramphenicol/fluconazole, against five pathogenic microorganisms-Staphylococcus aureus MTCC96, Salmonella enteric MTCC735, Escherichia coli MTCC730, Enterococcus faecalis MTCC2729, and Candida albicans MTCC 183. The activity of AgNPs on the growth and morphology of the microorganisms was studied in solid and liquid growth media employing various susceptibility assays. These studies demonstrated that concentrations of AgNPs alone between 10 and 25 μM reduced the growth rates of the tested bacteria and fungus and revealed bactericidal/fungicidal activity of the AgNPs by delaying the exponential and stationary phases. Examination using SEM showed pits and ruptures in bacterial cells indicating fragmented cell membrane and severe cell damage in those cultures treated with AgNPs. These experimental findings suggest that the biosynthesized AgNPs may be a potential antimicrobial agent.


silver nanoparticles biosynthesis endophyte Cryptosporiopsis ericae antimicrobial 


  1. Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., and Sastry, M. 2003. Extracellular biosynthesis of AgNPs using the fungus Fusarium oxysporum. Coll. Surf. B: Biointerfaces 28, 313–318.CrossRefGoogle Scholar
  2. Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P., and Misra, A. 2009. Green synthesis of AgNPs using latex of Jatropha curcas. Coll. Surf. A. 339, 134–139.CrossRefGoogle Scholar
  3. Begum, N.A., Mondal, S., Basu, S., Laskar, R.A., and Mandal, D. 2009. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extract. Coll. Surf. B: Biointerfaces 71, 113–118.CrossRefGoogle Scholar
  4. Bhagobaty, R.K. and Joshi, S.R. 2011. Metabolite profiling of endophytic fungal isolates of five ethno-pharmacologically important plants of Meghalaya, India. J. Metabolomics. Syst. Biol. 2, 20–31.Google Scholar
  5. Bhainsa, K.C. and D’Souza, S.K. 2006. Extracellular biosynthesis of AgNPs using the fungus Aspergillus fumigates. Coll. Surf. B: Biointerfaces 47, 160–164.CrossRefGoogle Scholar
  6. Birla, S., Tiwari, V.V., Gade, A.K., Ingle, A.P., Yadav, A.P., and Rai, M.K. 2009. Fabrication of AgNPs by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl. Microbiol. 48, 173–179.PubMedCrossRefGoogle Scholar
  7. Cho, K.H., Park, J.E., Osaka, T., and Park, S.G. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta. 51, 956–960.CrossRefGoogle Scholar
  8. Dar, M.A., Ingle, A., and Rai, M. 2012. Enhanced antimicrobial activity of AgNPs synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine 9, 105–110.PubMedGoogle Scholar
  9. Devi, L.S., Bareh, D.A., and Joshi, S.R. 2013. Studies on biosynthesis of antimicrobial AgNPs using endophytic fungi isolated from the ethno-medicinal plant Gloriosa superba L. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. doi:10.1007/s40011-013-0185-7.Google Scholar
  10. Devi, L.S. and Joshi, S.R. 2012. Antimicrobial and synergistic effects of AgNPs synthesized using soil fungi of high altitudes of Eastern Himalaya. Mycobiology 40, 27–34.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Esumi, K., Tano, T., Suzuk, A., Torigoe, K., and Meguro, K. 1990. Preparation and characterization of bimetallic palladium-copper colloids by thermal decomposition of their acetate compound in organic solvent. Chem. Mater. 2, 564–567.CrossRefGoogle Scholar
  12. Fayaz, A.M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P.T., and Venketesan, R. 2010. Biogenic synthesis of AgNPs and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine 6, 103–109.PubMedGoogle Scholar
  13. Fortin, D. and Beveridge, T.J. 2000. Mechanistic routes towards biomineral surface development, pp. 294. In Baeuerlein, E. (ed.), Biomineralisation: From Biology to Biotechnology and Medical Application. Wiley-VCH, Verlag, Germany.Google Scholar
  14. Gade, A.K., Bonde, P., Ingle, A.P., Marcato, P.D., Durán, N., and Rai, M.K. 2008. Exploitation of Aspergillus niger for synthesis of AgNPs. J. Biobased Mater. Bioenergy 2, 243–247.CrossRefGoogle Scholar
  15. Gade, A.K., Ingle, A., Whiteley, C., and Rai, M. 2010. Mycogenic metal nanoparticles: progress and applications. Biotechnol. Lett. 32, 593–600.PubMedCrossRefGoogle Scholar
  16. Goia, D.V. and Matijevic, N. 1998. Preparation of monodispersed metal particles. J. Chem. 22, 1203–1215.Google Scholar
  17. Gong, P., Li, H., He, X., Wang, K., Hu, J., Zhang, S., and Yang, X. 2007. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18, 604–611.Google Scholar
  18. Gordon, O., Vig Slenters, T., Brunetto, P.S., Villaruz, A.E., Sturdevant, D.E., Otto, M., Landmann, R., and Fromm, K.M. 2010. Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob. Agents Chemother. 54, 4208–4218.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Henglein, A. 2001. Reduction of Ag(CN)2 on silver and platinum colloidal nanoparticles. Langmuir 7, 2329–2333.CrossRefGoogle Scholar
  20. Huh, A.J. and Kwon, Y.J. 2011. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 156, 128–145.PubMedCrossRefGoogle Scholar
  21. Kim, S.H., Lee, H.S., Ryu, D.S., Choi, S.J., and Lee, D.S. 2011. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Kor. J. Microbiol. Biotechnol. 39, 77–85.Google Scholar
  22. Kora, A.J. and Arunachalam, J. 2011. Assessment of antibacterial activity of AgNPs on Pseudomonas aeruginosa and its mechanism of action. World J. Microbiol. Biotechnol. 27, 1209–1216.CrossRefGoogle Scholar
  23. Liu, X., Atwater, M., Wang, Q., and Huo, J. 2007. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Coll. Surf. B: Biointerfaces 58, 3–7.CrossRefGoogle Scholar
  24. Malabadi, R.B., Mulgund, G.S., Meti, N.T., Nataraja, K., and Kumar, S.V. 2012. Antibacterial activity of AgNPs synthesized by using whole plant extract of Clitoria ternatea. Res. Pharm. 2, 10–21.Google Scholar
  25. Mayr-Harting, A., Hedges, A., and Berkeley, R. 1972. Methods for studying bactericides, pp. 74. Academic Press, New York, N.Y., USA.Google Scholar
  26. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Parischa, R., Ajayakumar, P.V., Alam, M., Kumar, R., and et al. 2001. Fungus-mediated synthesis of AgNPs and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano. Lett. 1, 515–519.CrossRefGoogle Scholar
  27. Musarrat, J., Dwivedi, S., Singh, B.J., Al-Khedhairy, A.A., Azam, A., and Naqvi, A. 2010. Production of antimicrobial AgNPs in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour. Technol. 101, 8772–8776.PubMedCrossRefGoogle Scholar
  28. Nalwade, A.R., Shinde, S.S., Bhor, G.L., Admuthe, N.B., Shinde, S.D., and Gawade, V.V. 2013. Rapid biosynthesis of AgNPs using bottle gourd fruit extract and potential application as bactericide. Res. Pharma. 3, 22–28.Google Scholar
  29. Owen, N.L. and Hundley, N. 2004. Endophytes — the chemical synthesizers inside plants. Sci. Prog. 87, 79–99.PubMedCrossRefGoogle Scholar
  30. Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., and Pizurova, N. 2006. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110, 16248–16253.PubMedGoogle Scholar
  31. Pastoriza-Santos, L. and Liz-Marzan, M. 2002. Formation of PVPprotected metal nanoparticles in DMF. Langmuir 18, 2888–2893.CrossRefGoogle Scholar
  32. Qian, Y., Yu, H., He, D., Yang, H., Wang, W., Wan, X., and Wang, L. 2013. Biosynthesis of AgNPs by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst. Eng. 36, 1613–1619.PubMedCrossRefGoogle Scholar
  33. Rai, M., Yadav, A., and Gade, A. 2009. AgNPs as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83.PubMedCrossRefGoogle Scholar
  34. Rodriquez-Sanchez, L., Blanco, M.C., and Lopez-Quintela, M.A. 2000. Electrochemical synthesis of AgNPs. J. Phys. Chem. B 104, 9683–9688.Google Scholar
  35. Singh, M., Sing, S., Prasad, S., and Gambhir, I.S. 2008. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig. J. Nanomater. Bios. 3, 115–122.Google Scholar
  36. Sondi, I. and Salopel-sondi, B. 2004. AgNPs as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Coll. Interface Sci. 275, 177–182.CrossRefGoogle Scholar
  37. Song, J.Y. and Kim, B.S. 2009. Rapid biological synthesis of AgNPs using plant leaf extract. Bioprocess Biosyst. Eng. 32, 79–84.PubMedCrossRefGoogle Scholar
  38. Strobel, G.A. 2003. Endophytes as sources of bioactive products. Microb. Infect. 5, 535–544.CrossRefGoogle Scholar
  39. Strobel, G. and Daisy, B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 67, 491–502.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Strobel, G., Yang, X., Sears, J., Kramer, R., Sidhu, R.S., and Hess, W.M. 1996. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142, 435–440.PubMedCrossRefGoogle Scholar
  41. Taleb, A., Petit, C., and Pileni, M.P. 1997. Synthesis of highly monodisperse AgNPs from AOT reverse micelles: a way to 2D and 3D self organization. Chem. Mater. 9, 950–959.CrossRefGoogle Scholar
  42. Tan, R.X. and Zou, W.X. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18, 448–459.PubMedCrossRefGoogle Scholar
  43. Vaidyanathan, R., Kalishwaralal, K., Gopalram, S., and Gurunathan, S. 2009. Nanosilver — The burgeoning therapeutic molecule and its green synthesis. Biotechnol. Adv. 27, 924–937.PubMedCrossRefGoogle Scholar
  44. Verma, V.C., Kharwar, R.N., and Gange, A.C. 2010. Biosynthesis of antimicrobial AgNPs by the endophytic fungus Aspergillus clavatus. Nanomedicine (Lond) 5, 33–40.CrossRefGoogle Scholar
  45. White, T., Bruns, T., Lee, S., and Taylor, J. 1990. PCR Protocols, pp. 315–322. In Innis, M.A., Gelfand, D.H., Shinsky, J.J., and White, T.J. (ed.), A Guide to Methods and Applications. Academic Press, San Diego, USA.Google Scholar
  46. Wiley, B.J., Im, S.H., Li, Z.Y., McLellan, J., Siekkinen, A., and Xia, Y. 2006. Manoeuvring the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 110, 15666–15675.PubMedGoogle Scholar
  47. Zhu, J.J., Liu, S.W., Palchik, O., Koltypin, Y., and Gedanken, A. 2000. Shape-controlled synthesis of AgNPs by pulse sonoelctrochemical method. Langmuir 16, 6396–6399.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Microbiology Laboratory, Department of Biotechnology and BioinformaticsNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations