Journal of Microbiology

, Volume 52, Issue 3, pp 188–199 | Cite as

Mechanisms of synergy in polymicrobial infections

  • Justine L. Murray
  • Jodi L. Connell
  • Apollo Stacy
  • Keith H. TurnerEmail author
  • Marvin WhiteleyEmail author


Communities of microbes can live almost anywhere and contain many different species. Interactions between members of these communities often determine the state of the habitat in which they live. When these habitats include sites on the human body, these interactions can affect health and disease. Polymicrobial synergy can occur during infection, in which the combined effect of two or more microbes on disease is worse than seen with any of the individuals alone. Powerful genomic methods are increasingly used to study microbial communities, including metagenomics to reveal the members and genetic content of a community and metatranscriptomics to describe the activities of community members. Recent efforts focused toward a mechanistic understanding of these interactions have led to a better appreciation of the precise bases of polymicrobial synergy in communities containing bacteria, eukaryotic microbes, and/or viruses. These studies have benefited from advances in the development of in vivo models of polymicrobial infection and modern techniques to profile the spatial and chemical bases of intermicrobial communication. This review describes the breadth of mechanisms microbes use to interact in ways that impact pathogenesis and techniques to study polymicrobial communities.


polymicrobial synergy infection metatranscriptomics quorum sensing imaging mass spectrometry 3D printing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguzzi, A., Baumann, F., and Bremer, J. 2008. The prion’s elusive reason for being. Annu. Rev. Neurosci. 31, 439–477.PubMedGoogle Scholar
  2. Armbruster, C.E., Hong, W., Pang, B., Weimer, K.E., Juneau, R.A., Turner, J., and Swords, W.E. 2010. Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling. mBio 1.Google Scholar
  3. Asakawa, R., Komatsuzawa, H., Kawai, T., Yamada, S., Goncalves, R.B., Izumi, S., Fujiwara, T., Nakano, Y., Suzuki, N., Uchida, Y., and et al. 2003. Outer membrane protein 100, a versatile virulence factor of Actinobacillus actinomycetemcomitans. Mol. Microbiol. 50, 1125–1139.PubMedGoogle Scholar
  4. Bakaletz, L.O. 2004. Developing animal models for polymicrobial diseases. Nat. Rev. Microbiol. 2, 552–568.PubMedGoogle Scholar
  5. Bakaletz, L.O. 2009. Chinchilla as a robust, reproducible and polymicrobial model of otitis media and its prevention. Expert Rev. Vaccines 8.Google Scholar
  6. Bjornson, H.S. 1982. Bacterial synergy, virulence factors, and host defense mechanisms in the pathogenesis of intraabdominal infections. In Simmons, R.L. (ed.), Topics in intraabdominal surgical infection, pp. 65–78. Appleton-Century-Crofts, Norwalk, CT, USA.Google Scholar
  7. Brogden, K.A. and Guthmiller, J.M. 2002. Polymicrobial diseases. ASM Press, Washington, USA.Google Scholar
  8. Brook, I., Hunter, V., and Walker, R.I. 1984. Synergistic effect of Bacteroides, Clostridium, Fusobacterium, anaerobic cocci, and aerobic bacteria on mortality and induction of subcutaneous abscesses in mice. J. Infect. Dis. 149, 924–928.PubMedGoogle Scholar
  9. Brown, S.A. and Whiteley, M. 2007. A novel exclusion mechanism for carbon resource partitioning in Aggregatibacter actinomycetemcomitans. J. Bacteriol. 189, 6407–6414.PubMedCentralPubMedGoogle Scholar
  10. Chen, P.B., Davern, L.B., Katz, J., Eldridge, J.H., and Michalek, S.M. 1996. Host responses induced by co-infection with Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans in a murine model. Oral Microbiol. Immunol. 11, 274–281.PubMedGoogle Scholar
  11. Chen, T. and Duncan, M.J. 2004. Gingipain adhesin domains mediate Porphyromonas gingivalis adherence to epithelial cells. Microb. Pathog. 36, 205–209.PubMedGoogle Scholar
  12. Connell, J.L., Ritschdorff, E.T., Whiteley, M., and Shear, J.B. 2013. 3D printing of microscopic bacterial communities. Proc. Natl. Acad. Sci. USA 110, 18380–18385.PubMedGoogle Scholar
  13. Connell, J.L., Whiteley, M., and Shear, J.B. 2012. Sociomicrobiology in engineered landscapes. Nat. Chem. Biol. 8, 10–13.Google Scholar
  14. Cook, L.C., LaSarre, B., and Federle, M.J. 2013. Interspecies communication among commensal and pathogenic streptococci. mBio 4, e00382–13.PubMedCentralPubMedGoogle Scholar
  15. Costerton, J.W., Montanaro, L., and Arciola, C.R. 2005. Biofilm in implant infections: its production and regulation. Int. J. Artif. Organs 28, 1062–1068.PubMedGoogle Scholar
  16. Craven, D.E. and Steger, K.A. 1995. Epidemiology of nosocomial pneumonia. New perspectives on an old disease. Chest 108, 1S–16S.PubMedGoogle Scholar
  17. Dalton, T., Dowd, S.E., Wolcott, R.D., Sun, Y., Watters, C., Griswold, J.A., and Rumbaugh, K.P. 2011. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS One 6, e27317.PubMedCentralPubMedGoogle Scholar
  18. Darouiche, R.O. 2001. Device-associated infections: a macroproblem that starts with microadherence. Clin. Infect. Dis. 33, 1567–1572.PubMedGoogle Scholar
  19. Domann, E., Hong, G., Imirzalioglu, C., Turschner, S., Kuhle, J., Watzel, C., Hain, T., Hossain, H., and Chakraborty, T. 2003. Culture-independent identification of pathogenic bacteria and polymicrobial infections in the genitourinary tract of renal transplant recipients. J. Clin. Microbiol. 41, 5500–5510.PubMedCentralPubMedGoogle Scholar
  20. Doughty, D.M., Dieterle, M., Sessions, A.L., Fischer, W.W., and Newman, D.K. 2014. Probing the subcellular localization of hopanoid lipids in bacteria using nanoSIMS. PLoS One 9, e84455.PubMedCentralPubMedGoogle Scholar
  21. Duan, K., Dammel, C., Stein, J., Rabin, H., and Surette, M.G. 2003. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol. Microbiol. 50, 1477–1491.PubMedGoogle Scholar
  22. Dymock, D., Weightman, A.J., Scully, C., and Wade, W.G. 1996. Molecular analysis of microflora associated with dentoalveolar abscesses. J. Clin. Microbiol. 34, 537–542.PubMedCentralPubMedGoogle Scholar
  23. Eberth, C.J. 1881. Neue Untersuchungen über den bacillus des Abdominaltyphus. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 83, 486–501.Google Scholar
  24. Fouchier, R.A., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G.J., van den Hoogen, B.G., Peiris, M., Lim, W., Stohr, K., and Osterhaus, A.D. 2003. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature 423, 240.PubMedGoogle Scholar
  25. Frias-Lopez, J., Shi, Y., Tyson, G.W., Coleman, M.L., Schuster, S.C., Chisholm, S.W., and Delong, E.F. 2008. Microbial community gene expression in ocean surface waters. Proc. Natl. Acad. Sci. USA 105, 3805–3810.PubMedCentralPubMedGoogle Scholar
  26. Gaffky, G. 1884. Zur Ätiologie des Abdominal-Typhus. Mitteillungen aus dem Kaiserlichen Gesundheitsamt 2, 372–420.Google Scholar
  27. Gans, J., Wolinsky, M., and Dunbar, J. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390.PubMedGoogle Scholar
  28. Giebink, G.S., Berzins, I.K., Marker, S.C., and Schiffman, G. 1980. Experimental otitis media after nasal inoculation of Streptococcus pneumoniae and influenza A virus in chinchillas. Infect. Immun. 30, 445–450.PubMedCentralPubMedGoogle Scholar
  29. Giebink, G.S., Payne, E.E., Mills, E.L., Juhn, S.K., and Quie, P.G. 1976. Experimental otitis media due to Streptococcus pneumoniae: immunopathogenic response in the chinchilla. J. Infect. Dis. 134, 595–604.PubMedGoogle Scholar
  30. Gonzalez, D.J., Haste, N.M., Hollands, A., Fleming, T.C., Hamby, M., Pogliano, K., Nizet, V., and Dorrestein, P.C. 2011. Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology 157, 2485–2492.PubMedCentralPubMedGoogle Scholar
  31. Gordon, H.A., and Pesti, L. 1971. The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol. Rev. 35, 390–429.PubMedCentralPubMedGoogle Scholar
  32. Grenier, D. 1992. Demonstration of a bimodal coaggregation reaction between Porphyromonas gingivalis and Treponema denticola. Oral Microbiol. Immunol. 7, 280–284.PubMedGoogle Scholar
  33. Harriott, M.M., and Noverr, M.C. 2009. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob. Agents Chemother. 53, 3914–3922.PubMedCentralPubMedGoogle Scholar
  34. Holley, J.L., Bernardini, J., and Piraino, B. 1992. Polymicrobial peritonitis in patients on continuous peritoneal dialysis. Am. J. Kidney Dis. 19, 162–166.PubMedGoogle Scholar
  35. Hsu, C.C., White, N.M., Hayashi, M., Lin, E.C., Poon, T., Banerjee, I., Chen, J., Pfaff, S.L., Macagno, E.R., and Dorrestein, P.C. 2013. Microscopy ambient ionization top-down mass spectrometry reveals developmental patterning. Proc. Natl. Acad. Sci. USA 110, 14855–14860.PubMedCentralPubMedGoogle Scholar
  36. Imirzalioglu, C., Hain, T., Chakraborty, T., and Domann, E. 2008. Hidden pathogens uncovered: metagenomic analysis of urinary tract infections. Andrologia 40, 66–71.PubMedGoogle Scholar
  37. Jacobsen, F., Fisahn, C., Sorkin, M., Thiele, I., Hirsch, T., Stricker, I., Klaassen, T., Roemer, A., Fugmann, B., and Steinstraesser, L. 2011. Efficacy of topically delivered moxifloxacin against wound infection by Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 55, 2325–2334.PubMedCentralPubMedGoogle Scholar
  38. Jander, G., Rahme, L.G., and Ausubel, F.M. 2000. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 182, 3843–3845.PubMedCentralPubMedGoogle Scholar
  39. Jurcisek, J.A., Durbin, J.E., Kusewitt, D.F., and Bakaletz, L.O. 2003. Anatomy of the nasal cavity in the chinchilla. Cells Tissues Organs 174, 136–152.PubMedGoogle Scholar
  40. Kämmerer, H. 1924. Beiträge zur Bedeutung des Bakteriellen Synergismus für die Biologie. Klinische Wochenschrift 3, 723–727.Google Scholar
  41. Kaplan, A.H., Weber, D.J., Oddone, E.Z., and Perfect, J.R. 1989. Infection due to Actinobacillus actinomycetemcomitans: 15 cases and review. Rev. Infect. Dis. 11, 46–63.PubMedGoogle Scholar
  42. Kaplan, C.W., Lux, R., Haake, S.K., and Shi, W. 2009. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol. Microbiol. 71, 35–47.PubMedCentralPubMedGoogle Scholar
  43. Kesavalu, L., Holt, S.C., and Ebersole, J.L. 1998. Virulence of a polymicrobic complex, Treponema denticola and Porphyromonas gingivalis, in a murine model. Oral Microbiol. Immunol. 13, 373–377.PubMedGoogle Scholar
  44. Kesavalu, L., Sathishkumar, S., Bakthavatchalu, V., Matthews, C., Dawson, D., Steffen, M., and Ebersole, J.L. 2007. Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease. Infect. Immun. 75, 1704–1712.PubMedCentralPubMedGoogle Scholar
  45. Kim, H.J., Boedicker, J.Q., Choi, J.W., and Ismagilov, R.F. 2008. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl. Acad. Sci. USA 105, 18188–18193.PubMedCentralPubMedGoogle Scholar
  46. Kim, H.J., Du, W.B., and Ismagilov, R.F. 2011. Complex function by design using spatially pre-structured synthetic microbial communities: degradation of pentachlorophenol in the presence of Hg(II). Integr Biol-Uk 3, 126–133.Google Scholar
  47. Kline, K.A., Schwartz, D.J., Gilbert, N.M., Hultgren, S.J., and Lewis, A.L. 2012. Immune modulation by group B Streptococcus influences host susceptibility to urinary tract infection by uropathogenic Escherichia coli. Infect. Immun. 80, 4186–4194.PubMedCentralPubMedGoogle Scholar
  48. Koch, R. 1876. Untersuchungen über Bakterien: V. Die Ätiologie der Milzbrand-Krankheit, begründet auf die Entwicklungsgeschichte des Bacillus anthracis. Cohns Beitrage zur Biologie der Pflanzen 2, 277–310.Google Scholar
  49. Koch, R. 1878 Untersuchungen über die Ätiologie der Wundinfektionskrankheiten. Vogel, Leipzig, Germany.Google Scholar
  50. Koch, R. 1882. Die Ätiologie der Tuberkulose. Berliner. Klinische. Wochenschrift. 19, 221–230.Google Scholar
  51. Koch, R. 1893. Über den augenblicklichen Stand der bakteriologischen Choleradiagnose. Zeitschrift für Hygiene und Infectionskrankheiten 14, 319–333.Google Scholar
  52. Kolenbrander, P.E. and London, J. 1993. Adhere today, here tomorrow: oral bacterial adherence. J. Bacteriol. 175, 3247–3252.PubMedCentralPubMedGoogle Scholar
  53. Kolenbrander, P.E., Palmer, R.J., Jr., Periasamy, S., and Jakubovics, N.S. 2010. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 8, 471–480.PubMedGoogle Scholar
  54. Korgaonkar, A., Trivedi, U., Rumbaugh, K.P., and Whiteley, M. 2013. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl. Acad. Sci. USA 110, 1059–1064.PubMedCentralPubMedGoogle Scholar
  55. Kozarov, E.V., Dorn, B.R., Shelburne, C.E., Dunn, W.A., Jr., and Progulske-Fox, A. 2005. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler. Thromb. Vasc. Biol. 25, e17–18.PubMedGoogle Scholar
  56. Laufer, A.S., Metlay, J.P., Gent, J.F., Fennie, K.P., Kong, Y., and Pettigrew, M.M. 2011. Microbial communities of the upper respiratory tract and otitis media in children. mBio 2, e00245–00210.PubMedCentralPubMedGoogle Scholar
  57. Laveran, A. 1880. Note sur un nouveau parasite trouvè dans le sang de plusieurs malades atteints de fièvre palustre. Bull. Acad. Natl. Med. 9, 1235–1236.Google Scholar
  58. Lavigne, J.P., Nicolas-Chanoine, M.H., Bourg, G., Moreau, J., and Sotto, A. 2008. Virulent synergistic effect between Enterococcus faecalis and Escherichia coli assayed by using the Caenorhabditis elegans model. PLoS One 3, e3370.PubMedCentralPubMedGoogle Scholar
  59. Lim, Y.W., Schmieder, R., Haynes, M., Willner, D., Furlan, M., Youle, M., Abbott, K., Edwards, R., Evangelista, J., Conrad, D., and Rohwer, F. 2012. Metagenomics and metatranscriptomics: Windows on CF-associated viral and microbial communities. J. Cyst. Fibros.12, 154–164.Google Scholar
  60. Ling, Z., Kong, J., Liu, F., Zhu, H., Chen, X., Wang, Y., Li, L., Nelson, K.E., Xia, Y., and Xiang, C. 2010. Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics 11, 488.PubMedCentralPubMedGoogle Scholar
  61. Liu, X., Ramsey, M.M., Chen, X., Koley, D., Whiteley, M., and Bard, A.J. 2011. Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. Proc. Natl. Acad. Sci. USA 108, 2668–2673.PubMedCentralPubMedGoogle Scholar
  62. Lynch, A.S. and Robertson, G.T. 2008. Bacterial and fungal biofilm infections. Annu. Rev. Med. 59, 415–428.PubMedGoogle Scholar
  63. Macklaim, J.M., Fernandes, A.D., Di Bella, J.M., Hammond, J., Reid, G., and Gloor, G.B. 2013. Comparative meta-RNA-seq of the vaginal microbiota and differential expression by Lactobacillus iners in health and dysbiosis. Microbiome 1, 1–11.Google Scholar
  64. Mahajan-Miklos, S., Tan, M.W., Rahme, L.G., and Ausubel, F.M. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa Caenorhabditis elegans pathogenesis model. Cell 96, 47–56.PubMedGoogle Scholar
  65. Marra, A.R., Bearman, G.M., Wenzel, R.P., and Edmond, M.B. 2005. Comparison of the systemic inflammatory response syndrome between monomicrobial and polymicrobial Pseudomonas aeruginosa nosocomial bloodstream infections. BMC Infect. Dis. 5, 94.PubMedCentralPubMedGoogle Scholar
  66. Mashburn, L.M., Jett, A.M., Akins, D.R., and Whiteley, M. 2005. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J. Bacteriol. 187, 554–566.PubMedCentralPubMedGoogle Scholar
  67. Mastropaolo, M.D., Evans, N.P., Byrnes, M.K., Stevens, A.M., Robertson, J.L., and Melville, S.B. 2005. Synergy in polymicrobial infections in a mouse model of type 2 diabetes. Infect. Immun. 73, 6055–6063.PubMedCentralPubMedGoogle Scholar
  68. Mestas, J. and Hughes, C.C. 2004. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738.PubMedGoogle Scholar
  69. Miller, W.D. 1890. Micro-organisms of the human mouth, p. 25. The S.S. White Dental MFG. Co, Philadelphia, USA.Google Scholar
  70. Moree, W.J., Phelan, V.V., Wu, C.H., Bandeira, N., Cornett, D.S., Duggan, B.M., and Dorrestein, P.C. 2012. Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc. Natl. Acad. Sci. USA 109, 13811–13816.PubMedCentralPubMedGoogle Scholar
  71. Mylonakis, E., Casadevall, A., and Ausubel, F.M. 2007. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog. 3, e101.PubMedCentralPubMedGoogle Scholar
  72. Nagashima, H., Takao, A., and Maeda, N. 1999. Abscess forming ability of Streptococcus milleri group: synergistic effect with Fusobacterium nucleatum. Microb. Immunol. 43, 207–216.Google Scholar
  73. Nelson, A., De Soyza, A., Perry, J.D., Sutcliffe, I.C., and Cummings, S.P. 2012. Polymicrobial challenges to Koch’s postulates: ecological lessons from the bacterial vaginosis and cystic fibrosis microbiomes. Innate Immun. 18, 774–783.PubMedGoogle Scholar
  74. Nguyen, D.D., Wu, C.H., Moree, W.J., Lamsa, A., Medema, M.H., Zhao, X.L., Gavilan, R.G., Aparicio, M., Atencio, L., Jackson, C., and et al. 2013. MS/MS networking guided analysis of molecule and gene cluster families. Proc. Natl. Acad. Sci. USA 110, E2611–E2620.PubMedCentralPubMedGoogle Scholar
  75. Orth, R.K., O’Brien-Simpson, N.M., Dashper, S.G., and Reynolds, E.C. 2011. Synergistic virulence of Porphyromonas gingivalis and Treponema denticola in a murine periodontitis model. Mol. Oral Microbiol. 26, 229–240.PubMedGoogle Scholar
  76. Ovchinnikova, O.S., Kjoller, K., Hurst, G.B., Pelletier, D.A., and Van Berkel, G.J. 2014. Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging. Anal. Chem. 86, 1083–1090.PubMedGoogle Scholar
  77. Pace, N.R., Stahl, D.A., Lane, D.J., and Olsen, G.J. 1986. The analysis of natural microbial populations by rRNA sequences. Adv. Microb. Ecol. 9, 1–55.Google Scholar
  78. Partida-Martinez, L.P., and Hertweck, C. 2005. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437, 884–888.PubMedGoogle Scholar
  79. Paster, B.J., Boches, S.K., Galvin, J.L., Ericson, R.E., Lau, C.N., Levanos, V.A., Sahasrabudhe, A., and Dewhirst, F.E. 2001. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183, 3770–3783.PubMedCentralPubMedGoogle Scholar
  80. Paster, B.J., Olsen, I., Aas, J.A., and Dewhirst, F.E. 2006. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontology 2000 42, 80–87.Google Scholar
  81. Pasteur, L. and Joubert, J. 1877. Charbon et septicemie. Compt. Rend. Acad. 85, 101–105.Google Scholar
  82. Peleg, A.Y., Tampakakis, E., Fuchs, B.B., Eliopoulos, G.M., Moellering, R.C., Jr., and Mylonakis, E. 2008. Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 105, 14585–14590.PubMedCentralPubMedGoogle Scholar
  83. Percival, S.L., Thomas, J.G., and Williams, D.W. 2010. Biofilms and bacterial imbalances in chronic wounds: anti-Koch. Int. Wound J. 7, 169–175.PubMedGoogle Scholar
  84. Peters, B.M., Jabra-Rizk, M.A., O’May, G.A., Costerton, J.W., and Shirtliff, M.E. 2012a. Polymicrobial interactions: impact on pathogenesis and human disease. Clin. Microbiol. Rev. 25, 193–213.PubMedCentralPubMedGoogle Scholar
  85. Peters, B.M., Ovchinnikova, E.S., Krom, B.P., Schlecht, L.M., Zhou, H., Hoyer, L.L., Busscher, H.J., van der Mei, H.C., Jabra-Rizk, M.A., and Shirtliff, M.E. 2012b. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology 158, 2975–2986.PubMedGoogle Scholar
  86. Phelan, V.V., Liu, W.T., Pogliano, K., and Dorrestein, P.C. 2012. Microbial metabolic exchange-the chemotype-to-phenotype link. Nat. Chem. Biol. 8, 26–35.Google Scholar
  87. Price, L.B., Liu, C.M., Melendez, J.H., Frankel, Y.M., Engelthaler, D., Aziz, M., Bowers, J., Rattray, R., Ravel, J., Kingsley, C., Keim, P.S., Lazarus, G.S., and Zenilman, J.M. 2009. Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 4, e6462.PubMedCentralPubMedGoogle Scholar
  88. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., and et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.PubMedCentralPubMedGoogle Scholar
  89. Ramos, C., Licht, T.R., Sternberg, C., Krogfelt, K.A., and Molin, S. 2001. Monitoring bacterial growth activity in biofilms from laboratory flow chambers, plant rhizosphere, and animal intestine. Methods Enzymol. 337, 21–42.PubMedGoogle Scholar
  90. Ramsey, M.M., Rumbaugh, K.P., and Whiteley, M. 2011. Metabolite cross-feeding enhances virulence in a model polymicrobial infection. PLoS Pathog. 7, e1002012.PubMedCentralPubMedGoogle Scholar
  91. Ramsey, M.M., and Whiteley, M. 2009. Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proc. Natl. Acad. Sci. USA 106, 1578–1583.PubMedCentralPubMedGoogle Scholar
  92. Rath, C.M., Alexandrov, T., Higginbottom, S.K., Song, J., Milla, M.E., Fischbach, M.A., Sonnenburg, J.L., and Dorrestein, P.C. 2012. Molecular analysis of model gut microbiotas by imaging mass spectrometry and nanodesorption electrospray ionization reveals dietary metabolite transformations. Anal. Chem. 84, 9259–9267.PubMedCentralPubMedGoogle Scholar
  93. Rath, C.M., Yang, J.Y., Alexandrov, T., and Dorrestein, P.C. 2013. Data-independent microbial metabolomics with ambient ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 1167–1176.PubMedGoogle Scholar
  94. Ravel, J., Gajer, P., Abdo, Z., Schneider, G.M., Koenig, S.S., McCulle, S.L., Karlebach, S., Gorle, R., Russell, J., Tacket, C.O., and et al. 2011. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108 Suppl 1, 4680–4687.Google Scholar
  95. Rivers, T.M. 1937. Viruses and Koch’s postulates. J. Bacteriol. 33, 1–12.PubMedCentralPubMedGoogle Scholar
  96. Rogers, G.B., Carroll, M.P., Serisier, D.J., Hockey, P.M., Jones, G., and Bruce, K.D. 2004. Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. J. Clin. Microbiol. 42, 5176–5183.PubMedCentralPubMedGoogle Scholar
  97. Rogers, G.B., Hart, C.A., Mason, J.R., Hughes, M., Walshaw, M.J., and Bruce, K.D. 2003. Bacterial diversity in cases of lung infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) length heterogeneity PCR and 16S rDNA terminal restriction fragment length polymorphism profiling. J. Clin. Microbiol. 41, 3548–3558.PubMedCentralPubMedGoogle Scholar
  98. Ronald, A. 2002. The etiology of urinary tract infection: traditional and emerging pathogens. Am. J. Med. 113Suppl 1A, 14S–19S.PubMedGoogle Scholar
  99. Ross, R. 1898. Report on the cultivation of proteosoma, labbé, in grey mosquitos. Office of the Superintendent of Government Printing, Calcutta, India.Google Scholar
  100. Roth, W.J., Kissinger, C.B., McCain, R.R., Cooper, B.R., Marchant-Forde, J.N., Vreeman, R.C., Hannou, S., and Knipp, G.T. 2013. Assessment of juvenile pigs to serve as human pediatric surrogates for preclinical formulation pharmacokinetic testing. AAPS J. 15, 763–774.PubMedGoogle Scholar
  101. Rotstein, O.D., Pruett, T.L., and Simmons, R.L. 1985. Mechanisms of microbial synergy in polymicrobial surgical infections. Rev. Infect. Dis. 7, 151–170.PubMedGoogle Scholar
  102. Safdar, N., Crnich, C.J., and Maki, D.G. 2005. The pathogenesis of ventilator-associated pneumonia: its relevance to developing effective strategies for prevention. Respir. Care 50, 725–739.PubMedGoogle Scholar
  103. Schillinger, C., Petrich, A., Lux, R., Riep, B., Kikhney, J., Friedmann, A., Wolinsky, L.E., Gobel, U.B., Daims, H., and Moter, A. 2012. Co-localized or randomly distributed? Pair cross correlation of in vivo grown subgingival biofilm bacteria quantified by digital image analysis. PLoS One 7, e37583.PubMedCentralPubMedGoogle Scholar
  104. Sibley, C.D., Duan, K., Fischer, C., Parkins, M.D., Storey, D.G., Rabin, H.R., and Surette, M.G. 2008a. Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog. 4, e1000184.PubMedCentralPubMedGoogle Scholar
  105. Sibley, C.D., Parkins, M.D., Rabin, H.R., Duan, K., Norgaard, J.C., and Surette, M.G. 2008b. A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 105, 15070–15075.PubMedCentralPubMedGoogle Scholar
  106. Socransky, S.S., Haffajee, A.D., Cugini, M.A., Smith, C., and Kent, R.L., Jr. 1998. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25, 134–144.PubMedGoogle Scholar
  107. Tampakakis, E., Peleg, A.Y., and Mylonakis, E. 2009. Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica serovar Typhimurium. Eukaryotic Cell 8, 732–737.PubMedCentralPubMedGoogle Scholar
  108. Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., and Gordon, J.I. 2007. The human microbiome project. Nature 449, 804–810.PubMedCentralPubMedGoogle Scholar
  109. Twin, J., Bradshaw, C.S., Garland, S.M., Fairley, C.K., Fethers, K., and Tabrizi, S.N. 2013. The potential of metatranscriptomics for identifying screening targets for bacterial vaginosis. PLoS One 8, e76892.PubMedCentralPubMedGoogle Scholar
  110. Valm, A.M., Mark Welch, J.L., Rieken, C.W., Hasegawa, Y., Sogin, M.L., Oldenbourg, R., Dewhirst, F.E., and Borisy, G.G. 2011. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl. Acad. Sci. USA 108, 4152–4157.PubMedCentralPubMedGoogle Scholar
  111. van der Gast, C.J., Walker, A.W., Stressmann, F.A., Rogers, G.B., Scott, P., Daniels, T.W., Carroll, M.P., Parkhill, J., and Bruce, K.D. 2011. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J. 5, 780–791.PubMedCentralPubMedGoogle Scholar
  112. Vega, N.M., Allison, K.R., Samuels, A.N., Klempner, M.S., and Collins, J.J. 2013. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc. Natl. Acad. Sci. USA 110, 14420–14425.PubMedCentralPubMedGoogle Scholar
  113. Wang, J., Qi, J., Zhao, H., He, S., Zhang, Y., Wei, S., and Zhao, F. 2013. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci. Rep. 3, 1843–1852.PubMedCentralPubMedGoogle Scholar
  114. Watanabe, T., Tada, M., Nagai, H., Sasaki, S., and Nakao, M. 1998. Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology 115, 642–648.PubMedGoogle Scholar
  115. Watrous, J., Roach, P., Alexandrov, T., Heath, B.S., Yang, J.Y., Kersten, R.D., van der Voort, M., Pogliano, K., Gross, H., Raaijmakers, J.M., and et al. 2012. Mass spectral molecular networking of living microbial colonies. Proc. Natl. Acad. Sci. USA 109, E1743–E1752.PubMedCentralPubMedGoogle Scholar
  116. Watrous, J.D., Alexandrov, T., and Dorrestein, P.C. 2011. The evolving field of imaging mass spectrometry and its impact on future biological research. J. Mass Spectrom 46, 209–222.PubMedCentralPubMedGoogle Scholar
  117. Watrous, J.D. and Dorrestein, P.C. 2011. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 9, 683–694.PubMedCentralPubMedGoogle Scholar
  118. Watrous, J.D., Phelan, V.V., Hsu, C.C., Moree, W.J., Duggan, B.M., Alexandrov, T., and Dorrestein, P.C. 2013. Microbial metabolic exchange in 3D. ISME J. 7, 770–780.PubMedGoogle Scholar
  119. Weibel, D.B., DiLuzio, W.R., and Whitesides, G.M. 2007. Microfabrication meets microbiology. Nat. Rev. Microbiol. 5, 209–218.PubMedGoogle Scholar
  120. Wessel, A.K., Hmelo, L., Parsek, M.R., and Whiteley, M. 2013. Going local: technologies for exploring bacterial microenvironments. Nat. Rev. Microbiol. 11, 337–348.PubMedGoogle Scholar
  121. Williams, B.L., McCann, G.F., and Schoenknecht, F.D. 1983. Bacteriology of dental abscesses of endodontic origin. J. Clin. Microbiol. 18, 770–774.PubMedCentralPubMedGoogle Scholar
  122. Wong, S.M., Bernui, M., Shen, H., and Akerley, B.J. 2013. Genome-wide fitness profiling reveals adaptations required by Haemophilus in coinfection with influenza A virus in the murine lung. Proc. Natl. Acad. Sci. USA 110, 15413–15418.PubMedCentralPubMedGoogle Scholar
  123. Wright, J.B., Lam, K., Buret, A.G., Olson, M.E., and Burrell, R.E. 2002. Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen. 10, 141–151.PubMedGoogle Scholar
  124. Yaguchi, T., Dwidar, M., Byun, C.K., Leung, B., Lee, S., Cho, Y.K., Mitchell, R.J., and Takayama, S. 2012. Aqueous two-phase system-derived biofilms for bacterial interaction studies. Biomacromolecules 13, 2655–2661.PubMedGoogle Scholar
  125. Yamada, M., Ikegami, A., and Kuramitsu, H.K. 2005. Synergistic biofilm formation by Treponema denticola and Porphyromonas gingivalis. FEMS Microbiol. Lett. 250, 271–277.PubMedGoogle Scholar
  126. Yang, J.Y., Phelan, V.V., Simkovsky, R., Watrous, J.D., Trial, R.M., Fleming, T.C., Wenter, R., Moore, B.S., Golden, S.S., Pogliano, K., and Dorrestein, P.C. 2012. Primer on agar-based microbial imaging mass spectrometry. J. Bacteriol. 194, 6023–6028.PubMedCentralPubMedGoogle Scholar
  127. Zhao, J., Schloss, P.D., Kalikin, L.M., Carmody, L.A., Foster, B.K., Petrosino, J.F., Cavalcoli, J.D., Van Devanter, D.R., Murray, S., Li, J.Z., Young, V.B., and LiPuma, J.J. 2012. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc. Natl. Acad. Sci. USA 109, 5809–5814.PubMedCentralPubMedGoogle Scholar
  128. Zhao, L. 2013. The gut microbiota and obesity: from correlation to causality. Nat. Rev. Microbiol. 11, 639–647.PubMedGoogle Scholar
  129. Zhu, Y., Dashper, S.G., Chen, Y.Y., Crawford, S., Slakeski, N., and Reynolds, E.C. 2013. Porphyromonas gingivalis and Treponema denticola synergistic polymicrobial biofilm development. PLoS One 8, e71727.PubMedCentralPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Molecular Biosciences, Institute of Cell and Molecular Biology, Center for Infectious DiseaseThe University of Texas at AustinAustinUSA

Personalised recommendations