Advertisement

Journal of Microbiology

, Volume 52, Issue 2, pp 161–168 | Cite as

Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopahogenic bacterium Xenorhabdus nematophila

  • Seonghyeon Eom
  • Youngjin Park
  • Yonggyun KimEmail author
Microbial Pathogenesis and Host-Microbe Interaction

Abstract

The entomopathogenic bacterium Xenorhabdus nematophila secretes at least eight bacterial metabolites that play crucial roles suppressing target insect immune responses by inhibiting eicosanoid biosynthesis. We analyzed sequential changes in bacterial metabolite production during bacterial growth and analyzed their individual immunosuppressive activities against the insect host, Spodoptera exigua. X. nematophila exhibited a typical bacterial growth pattern in both insect host and culture medium, and eight metabolites were secreted at different time points. At the early growth phase (6–12 h), Ac-FGV and PHPP were detected in significant amounts in the culture broth. At this early phase, both Ac-FGV (18 μg/ml) and oxindole (110 μg/ml) levels significantly inhibited phenoloxidase and phospholipase A2 activities in S. exigua hemolymph. At the late growth phase (12–36 h), all eight metabolites were detected at significant levels (10–140 μg/ml) in the culture broth and were sufficient to induce hemocyte toxicity. These results suggest that X. nematophila sequentially produces immunosuppressive metabolites that might sequentially and cooperatively inhibit different steps of insect immune responses.

Keywords

insect immune immunosuppression Xenorhabdus nematophila hemocyte benzylideneacetone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhurst, R.J. 1980. Morphological and functional dimorphism in Xenorhabdus ssp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121, 303–309.Google Scholar
  2. Aymeric, J.L., Givaudan, A., and Duvic, B. 2010. Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens. Mol. Immunol. 47, 2342–2348.PubMedCrossRefGoogle Scholar
  3. Boonsuepsakul, S., Luepromchai, E., and Rongnoparut, P. 2008. Characterization of Anopheles minimus CYP6AA3 expressed in a recombinant baculovirus system. Arch. Insect Biochem. Physiol. 69, 13–21.PubMedCrossRefGoogle Scholar
  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 71, 248–254.CrossRefGoogle Scholar
  5. Cerenius, L. and Söberhäll, K. 2004. The prophenoloxidase-activating system in invertebrates. Immunol. Rev. 198, 116–126.PubMedCrossRefGoogle Scholar
  6. Cho, S. and Kim, Y. 2004. Hemocyte apoptosis is induced by entomopathogenic bacteria, Xenorhabdus and Photorhabdus, in Bombyx mori. J. Asia Pac. Entomol. 7, 195–200.CrossRefGoogle Scholar
  7. Cinque, B., Fanini, D., Di Marzio, L., Palumbo, O., La Torre, C., Donato, V., Velardi, E., Bruscoli, S., Riccardi, C., and Cifone, M.G. 2008. Involvement of cPLA2 inhibition in dexamethasone-induced thymocyte apoptosis. J. Immunopathol. Pharmacol. 21, 539–551.Google Scholar
  8. Costa-Junior, H.M., Hamaty, F.C., da Silva Farias, R., Einicker-Lamas, M., da Silva, M.H., and Persechini, P.M. 2006. Apoptosis-inducing factor of a cytotoxic T cell line: involvement of a secretory phospholipase A2. Cell Tissue Res. 324, 255–266.PubMedCrossRefGoogle Scholar
  9. Cowles, K. and Goodrich-Blair, H. 2005. Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects. Cell. Microbiol. 7, 209–219.PubMedCrossRefGoogle Scholar
  10. Dunphy, G.B. and Webster, J.M. 1984. Interaction of Xenorhabdus nematophila subsp. nematophila with the hemolymph of Galleria mellonella. J. Insect Physiol. 30, 883–889.CrossRefGoogle Scholar
  11. Foukas, L.C., Atsoulas, H.L., Paraskevopoulou, N., Metheniti, A., Lambropoulou, M., and Marmaras, V.J. 1998. Phagocytosis of Escherichia coli by insect hemocytes requires both activation of the Ras/mitogen-activated protein kinase signal transduction pathway for attachment and β3 integrin for internalization. J. Biol. Chem. 273, 14813–14818.PubMedCrossRefGoogle Scholar
  12. Fraga, B.M., Diaz, C.E., Guadano, A., and Gonzalez-Coloma, A. 2005. Diterpenes from Salvia broussonetii transformed roots and their insecticidal activity. J. Argric. Food Chem. 53, 5200–5206.CrossRefGoogle Scholar
  13. Gillespie, J.P., Kanost, M.R., and Trenczek, T. 1997. Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611–643.PubMedCrossRefGoogle Scholar
  14. Goh, H.G., Lee, S.G., Lee, B.P., Choi, K.M., and Kim, J.H. 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), on an artificial diet. Kor. J. Appl. Entomol. 29, 180–183.Google Scholar
  15. Gupta, A.P. and Campenot, E.S. 1996. Cytoskeletal F-actin polymerization from cytosolic G-actin occurs in the phagocytosing immunocytes of arthropods (Limulus polyphemus and Gromphadorhina poetentosa): dose [cAMP]i play any role? J. Invertebr. Pathol. 68, 118–130.PubMedCrossRefGoogle Scholar
  16. Horohov, D.W. and Dunn, P.E. 1983. Phagocytosis and nodule formation by hemocytes of Manduca sexta following injection of Pseudomonas aeruginosa. J. Invertebr. Pathol. 41, 203–213.CrossRefGoogle Scholar
  17. Hultmark, D. 2003. Drosophila immunity: paths and patterns. Cell 5, 360–361.Google Scholar
  18. Ji, D. and Kim, Y. 2004. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. J. Insect Physiol. 50, 489–496.PubMedCrossRefGoogle Scholar
  19. Kaya, H.K. and Gaugler, R. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38, 1–206.CrossRefGoogle Scholar
  20. Kim, Y., Ji, D., Cho, S., and Park, Y. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Pathol. 89, 258–264.PubMedCrossRefGoogle Scholar
  21. Kim, G.S. and Kim, Y. 2010. Up-regulation of circulating hemocyte population in response to bacterial challenge is mediated by octopamine and 5-hydroxytryptamine via Rac1 signal in Spodoptera exigua. J. Insect Physiol. 56, 559–566.PubMedCrossRefGoogle Scholar
  22. Kim, G.S., Nalini, M., Lee, D.W., and Kim, Y. 2009. Octopamine and 5-hydroxytryptamine mediate hemocytic phagocytosis and nodule formation via eicosanoids in the beet armyworm, Spodoptera exigua. Arch. Insect Biochem. Physiol. 70, 162–176.PubMedCrossRefGoogle Scholar
  23. Kim, K., Park, Y., Kim, Y., and Lee, Y. 2001. Study on the inoculation augmentation of Paecilomyces japonicus to the silkworm, Bombyx mori, using dexamethasone. Kor. J. Appl. Entomol. 40, 51–58.Google Scholar
  24. Lavine, M.D. and Strand, M.R. 2002. Insect hemocytes and their role in cellular immune responses. Insect Biochem. Mol. Biol. 32, 1237–1242.CrossRefGoogle Scholar
  25. Lee, S., Shrestha, S., Prasad, S.V., and Kim, Y. 2011. Role of a small G protein Ras in cellular response of the beet armyworm, Spo doptera exigua. J. Insect Physiol. 57, 356–362.PubMedCrossRefGoogle Scholar
  26. Lemaitre, B. and Hoffmann, J. 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743.PubMedCrossRefGoogle Scholar
  27. Marmaras, V.J. and Lampropoulou, M. 2009. Regulators and signaling in insect haemocyte immunity. Cell Signal. 21, 186–195.PubMedCrossRefGoogle Scholar
  28. Nappi, A.J. and Vass, E. 1998. Hydrogen peroxide production in immune-reactive Drosophila melanogaster. J. Parasitol. 84, 1150–1157.PubMedCrossRefGoogle Scholar
  29. Paladi, M. and Tepass, U. 2004. Function of Rho GTPases in embryonic blood cell migration in Drosophila. J. Cell Sci. 117, 6313–6326.PubMedCrossRefGoogle Scholar
  30. Park, D. and Forst, S. 2005. Co-regulation of motility, exoenzyme and antibiotic production by the EnvZ-OmpR-FlhDC-FliA pathway in Xenorhabdus nematophila. Mol. Microbiol. 61, 1397–1412.CrossRefGoogle Scholar
  31. Park, Y. and Kim, Y. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469–1476.PubMedCrossRefGoogle Scholar
  32. Park, Y., Kim, Y., and Yi, Y. 1999. Identification and characterization of a symbiotic bacterium associated with Steinernema carpocapsae in Korea. J. Asia Pac. Entomol. 2, 105–111.CrossRefGoogle Scholar
  33. Radvanyi, F., Jordan, L., Russo-Marie, F., and Bon, C. 1989. A sensitive and continuous fluorometric assay for phospholipase A2 using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177, 103–109.PubMedCrossRefGoogle Scholar
  34. Ratcliff, N.A. and Gots, P. 1990. Functional studies on insect haemocytes, including nonself recognition. Res. Immunol. 141, 919–923.CrossRefGoogle Scholar
  35. Ribeiro, C., Petit, V., and Affolter, M. 2003. Signaling systems, guided cell migration, and organogenesis: insights from genetic studies in Drosophila. Dev. Biol. 260, 1–8.PubMedCrossRefGoogle Scholar
  36. SAS Institute, Inc. 1989. SAS/STAT user’s guide, Release 6.03, Ed. Cary, N.C.Google Scholar
  37. Seo, S. and Kim, Y. 2011. Development of “Bt-Plus” biopesticide using entomopathogenic bacteria (Xenorhbadus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Kor. J. Appl. Entomol. 50, 171–178.CrossRefGoogle Scholar
  38. Seo, S., Lee, S., Hong, Y., and Kim, Y. 2012. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816–3823.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Shrestha, S., Hong, Y.P., and Kim, Y. 2010. Two chemical derivatives of bacterial metabolites suppress cellular immune responses and enhance pathogenicity of Bacillus thuringiensis against the diamondback moth, Plutella xylostella. J. Asia Pac. Entomol. 13, 55–60.CrossRefGoogle Scholar
  40. Shrestha, S. and Kim, Y. 2007. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocyte phagocytosis of Spodoptera exigua by inhibiting phospholipase A2. J. Invertebr. Pathol. 96, 64–70.PubMedCrossRefGoogle Scholar
  41. Shrestha, S. and Kim, Y. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm, Spodoptera exigua. Insect Biochem. Mol. Biol. 38, 99–112.PubMedCrossRefGoogle Scholar
  42. Shrestha, S. and Kim, Y. 2009. Biochemical characteristics of immune-associated phospholipase A2 and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47, 774–782.PubMedCrossRefGoogle Scholar
  43. Stanley, D. and Kim, Y. 2011. Prostaglandins and their receptors in insect biology. Front. Endocrinol. 2, 1–11.CrossRefGoogle Scholar
  44. Vigneux, F., Zumbihl, R., Jubelin, G., Ribeiro, C., Poncet, J., Baghdiguian, S., Givaudan, A., and Brehélin, M. 2007. The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens. J. Biol. Chem. 13, 9571–9580.CrossRefGoogle Scholar
  45. Williams, M.J., Habayeb, M.S., and Hultmark, D. 2007. Reciprocal regulation of Rac1 and Rho1 in Drosophila circulating immune surveillance cells. J. Cell Sci. 120, 502–511.PubMedCrossRefGoogle Scholar
  46. Winter, P., Rayne, R.C., and Coast, G.M. 2007. The effects of intracellular signaling pathway inhibitors on phagocytosis by haemocytes of Manduca sexta. J. Insect Physiol. 53, 975–982.PubMedCrossRefGoogle Scholar
  47. Zettervall, C.J., Anderl, I., Williams, M.J., Palmer, R., Kurucz, E., Ando, I., and Hultmark, D. 2004. A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl. Acad. Sci. USA 101, 14192–14197.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Bioresource SciencesAndong National UniversityAndongRepublic of Korea

Personalised recommendations